以API方式--模型部署发布

本文分享了两种常见的模型部署方法:PMML文件部署与模型服务发布。通过PMML文件部署时,需注意变量名等细节,避免异常字符导致的问题。模型服务如TensorflowServing则提供API接口,便于线上调用预测。项目中采用Flask框架实现模型服务,提供了Postman与python代码两种测试方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

综合网上及项目上的一些经验,对模型部署发布知识进行整理;
目前在项目上一共使用过两种方式:
1、常规机器学习模型:
以PMML文件部署方式:此方式在部署过程中,应该仔细检查PMML文件本身,包括变量名等;异常字符的变量名,模型生成PMML时容易出现错误;
2、模型服务:比如Tensorflow Serving,实际上是发布一个模型API接口,线上调用此接口进行预测;
项目中利用了Flask框架发布模型服务;

详见github:
https://github.com/Stonesusu/model_service
其中接口测试,一共采用两种方式:
1、Postman;
2、python代码开发;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值