I 2U-Net:具有丰富信息交互的双路径 U-Net 用于医学图像分割| 文献速递-基于深度学习的多模态数据分析与生存分析

Title

题目

I 2U-Net: A dual-path U-Net with rich information interaction for medical image segmentation

I 2U-Net:具有丰富信息交互的双路径 U-Net 用于医学图像分割

01

文献速递介绍

在计算机视觉领域,医学图像分割是一个主要挑战,例如皮肤镜图像中的皮肤病变分割(Dai等,2022年)、结肠镜图像中的息肉分割(Fan等,2020年)、磁共振图像中的脑肿瘤分割(Wang等,2021年)以及腹部CT图像中的多器官分割(Cao等,2021年)。这些分割结果提供了关于解剖区域的宝贵信息,有助于详细分析和帮助医生准确描绘损伤、监测疾病进展,并评估适当治疗的需求。随着对智能医学图像分析需求的增加,精确而稳健的分割方法变得越来越重要。

为了满足这一需求,许多具有编码器-解码器结构的深度学习方法被提出(Ramesh等,2021年)。它们的编码器通常用于提取图像特征,解码器则用于将提取的特征恢复到原始图像大小,并输出最终的分割结果。作为编码器-解码器网络的代表,U-Net(Ronneberger等,2015年)在许多医学分割任务中证明了其有效性,这启发了一系列高效的U形分割网络的发展,如Attention U-Net(Oktay等,2018年)、Res-UNet(Xiao等,2018年)和DR-UNet(Li等,2019年)。

尽管这些U形网络在医学图像分割中被广泛使用,但仍存在一个不可忽视的问题,即对具有模糊边界和不规则形状病变的分割结果不理想。这一结果主要归因于两个因素:(i)U形网络编码器提取的特征几乎被抽象语义信息所占据,失去了大量详细内容描述;(ii)尽管解码器中的跳跃连接可以融合低分辨率和高分辨率信息以改善特征学习,但受限于低分辨率和高分辨率特征之间的较大语义差距,导致特征图模糊和分割结果不佳(Pang等,2019年)。如图1所示,随着网络加深,详细信息(如边界、形状和纹理)逐渐减少,这显然对密集预测任务不利

Abstract

摘要

尽管 U 形网络在许多医学图像分割任务中取得了显著的性能,但它们很少建模层次化层之间的顺序关系。这一弱点使得当前层难以有效利用前一层的历史信息,导致对具有模糊边界和不规则形状病变的分割结果不尽如人意。为了解决这一问题,我们提出了一种新颖的双路径 U-Net,称为 I2U-Net。新提出的网络通过双路径之间的丰富信息交互,鼓励历史信息的重复使用和重新探索,使得深层可以学习更全面的特征,既包含低层次的详细描述,又包含高层次的语义抽象。具体来说,我们引入了一个多功能信息交互模块(MFII),它通过统一设计可以建模跨路径、跨层次和跨路径-层次的信息交互,使得所提出的 I2U-Net 表现类似于展开的 RNN,并享有建模时间序列信息的优势。此外,为了进一步选择性地和敏感地整合双路径编码器提取的信息,我们提出了一种全面信息融合和增强模块(HIFA),可以有效地连接编码器和解码器。在包括皮肤病变、息肉、脑肿瘤和腹部多器官分割在内的四个具有挑战性的任务上进行的广泛实验一致显示,所提出的 I2U-Net 在性能和泛化能力上均优于其他最先进的方法。

Method

方法

Chen et al. (2017) revealed that residual connection (He et al.,enables feature re-usage while dense connection (Huang et al.,encourages new feature exploration, which are both importantfor learning valuable representations. They also found that while residual and dense connections differ on the surface, both of them aremanifestations of a higher-order recurrent neural network (HORNN).Motivated by these, we propose a dual-path U-Net for medical imagesegmentation, dubbed I2U-Net. One path of I2U-Net is dedicated toimage feature information, while the other is to hidden state information with shared convolutional kernels along the depth. This structureallows I2U-Net to work similarly to an unfolded RNN (LeCun et al.,2015; Zhao et al., 2021) and enjoy its advantage of modeling time sequence information. It also allows I2U-Net to inherit the advantages ofresidual and dense connections, enabling convenient re-usage of historyfeatures and flexible exploration of new features with an acceptablecomputation cost.

Chen等人(2017年)揭

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值