那些人会买你的产品——电话营销预测

本文介绍了如何利用机器学习预测银行产品电话营销的成功率。首先,通过分析历史数据找出影响营销成功的规律,然后在Python中使用Scikit-Learn进行预测。在数据预处理阶段,检查并处理缺失值,对分类变量进行one-hot编码。接着,通过K折交叉验证评估了逻辑回归、k近邻、SVM和决策树等算法,发现逻辑回归在预测准确率方面表现最佳。特征工程和数据尺度调整也被用来提高模型精度,最终确定使用逻辑回归作为预测模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在前面的基础篇中,对某银行产品的电话营销结果进行了分析,寻找哪些参数是影响结果的主要因素。通过分析可以发现成功进行营销的规律,那么如何能够借助计算机将这些规律应用到对新用户是否能够成功营销进行预测呢?机器学习就是解决这类问题的手段之一,通过让机器学习历史的数据,自动发现其规律,并应用这个规律到新数据上,并给出预测结果。这大大减少了学习的时间和成本,并能做出比较准确的预测结果。接下来将会介绍一下如何使用机器学习来进一步挖掘数据,并做出预测。

在使用机器学习进行预测之前,首先需要配置机器学习的类库,在Python中使用最广泛的是Scikit-Learn这个类库。首先安装该类库到环境中,执行一下命令完成安装配置过程。
$ pip install -U scikit-learn

执行成功后,就可以在Python中使用Scikit-Learn来进行预测结果。

这个例子使用的,银行电话营销的数据,首先引入需要的类库,并读入数据。

在进行机器学习的训练之前,需要先查看一下是否存在缺失值,如果有缺失值,则必须对缺失值进行处理。

结果可以看到,没有任何缺失值。因为数据中存在一些分类项目,在进行模型的训练之前,通常对分类项目进行one-hot编码。在这里使用pandas的方法,进行one-hot编码。<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值