100.17 AI量化面试题:凯利准则的核心思想是什么?如何用它来确定最佳资本配置比例?

0. 承前

本文通过通俗易懂的方式介绍凯利准则(Kelly Criterion)的核心思想及其在投资中的应用,包括理论基础、实现方法和实际案例。

如果想更加全面清晰地了解金融资产组合模型进化论的体系架构,可参考:
0. 金融资产组合模型进化全图鉴

1. 解题思路

理解凯利准则,需要从以下几个维度进行分析:

1.1 理论基础维度

  • 期望增长率
  • 风险控制
  • 资金管理

1.2 应用场景维度

  • 投资组合管理
  • 风险控制
  • 资金分配

1.3 实践实现维度

  • 参数估计
  • 约束条件
  • 动态调整

2. 基础实现

2.1 单资产凯利公式

import numpy as np
import pandas as pd

class KellyCriterion:
    def __init__(self):
        pass
        
    def calculate_kelly_fraction(self, win_prob, win_loss_ratio):
        """
        计算单资产凯利比例
        win_prob: 获胜概率
        win_loss_ratio: 盈亏比
        """
        # 凯利公式:f = p - (1-p)/R
        # f: 投资比例
        # p: 获胜概率
        # R: 盈亏比
        
        kelly_fraction = win_prob - (1 - win_prob) / win_loss_ratio
        
        # 限制在[0,1]范围内
        kelly_fraction = np.clip(kelly_fraction, 0, 1)
        
        return kelly_fraction
    
    def estimate_parameters(self, returns):
        """
        从历史数据估计参数
        """
        win_prob = np.mean(returns > 0)
        
        positive_returns = returns[returns > 0]
        negative_returns = np.abs(returns[returns < 0])
        
        if len(negative_returns) == 0:
            win_loss_ratio = np.inf
        else:
            win_loss_ratio = np.mean(positive_returns) / np.mean(negative_returns)
            
        return {
   
   
            'win_probability': win_prob,
            'win_loss_ratio': win_loss_ratio
        }

2.2 多资产凯利优化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI量金术师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值