目录
0. 承前
本文通过通俗易懂的方式介绍凯利准则(Kelly Criterion)的核心思想及其在投资中的应用,包括理论基础、实现方法和实际案例。
如果想更加全面清晰地了解金融资产组合模型进化论的体系架构,可参考:
0. 金融资产组合模型进化全图鉴
1. 解题思路
理解凯利准则,需要从以下几个维度进行分析:
1.1 理论基础维度
- 期望增长率
- 风险控制
- 资金管理
1.2 应用场景维度
- 投资组合管理
- 风险控制
- 资金分配
1.3 实践实现维度
- 参数估计
- 约束条件
- 动态调整
2. 基础实现
2.1 单资产凯利公式
import numpy as np
import pandas as pd
class KellyCriterion:
def __init__(self):
pass
def calculate_kelly_fraction(self, win_prob, win_loss_ratio):
"""
计算单资产凯利比例
win_prob: 获胜概率
win_loss_ratio: 盈亏比
"""
# 凯利公式:f = p - (1-p)/R
# f: 投资比例
# p: 获胜概率
# R: 盈亏比
kelly_fraction = win_prob - (1 - win_prob) / win_loss_ratio
# 限制在[0,1]范围内
kelly_fraction = np.clip(kelly_fraction, 0, 1)
return kelly_fraction
def estimate_parameters(self, returns):
"""
从历史数据估计参数
"""
win_prob = np.mean(returns > 0)
positive_returns = returns[returns > 0]
negative_returns = np.abs(returns[returns < 0])
if len(negative_returns) == 0:
win_loss_ratio = np.inf
else:
win_loss_ratio = np.mean(positive_returns) / np.mean(negative_returns)
return {
'win_probability': win_prob,
'win_loss_ratio': win_loss_ratio
}
2.2 多资产凯利优化