1.6 重叠因子:移动平均线(Moving Average, MA)概念与Python实战

0. 本栏目因子汇总表

【量海航行】

1. 因子简述

移动平均线(Moving Average, MA)是技术分析中最基础和最常用的指标之一。它通过计算一定时间窗口内的价格平均值来平滑价格波动,帮助识别市场趋势。MA可以过滤市场噪音,提供更清晰的价格走势,是构建交易策略的重要工具。

2. 因子计算逻辑

MA的计算公式如下:

M A t = 1 n ∑ i = 0 n − 1 C l o s e t − i M A f a c t o r = C l o s e − M A σ n ( C l o s e ) \begin{align*} MA_t &= \frac{1}{n} \sum_{i=0}^{n-1} Close_{t-i} \\ MA_{factor} &= \frac{Close - MA}{\sigma_n(Close)} \end{align*} MAtMAfactor=n1i=0n1Closeti=σn(Close)CloseMA

其中:

  • n为移动平均的周期
  • Close为收盘价
  • σ_n(Close)为n周期收盘价的滚动标准差

3. 因子应用场景

  1. 趋势识别:

    • 价格上穿MA,产生做多信号
    • 价格下穿MA,产生做空信号
  2. 支撑阻力:

    • MA线常作为动态支撑位
    • MA线常作为动态阻力位
  3. 趋势强度:

    • 价格与MA的距离反映趋势强度
    • MA的斜率反映趋势速度
  4. 均线系统:

    • 与其他周期MA配合使用
    • 构建黄金交叉、死亡交叉等策略

4. 因子优缺点

优点:

  1. 简单直观:计算方法简单,容易理解
  2. 应用广泛:可用于各种市场和时间周期
  3. 稳定可靠:具有良好的统计学基础
  4. 适应性强:可根据需要调整参数

缺点:

  1. 滞后性:作为滞后指标,存在一定延迟
  2. 假信号:震荡市场可能产生虚假信号
  3. 参数依赖:不同参数可能产生不同结果
  4. 单一维度:仅考虑价格信息,忽略其他因素

5. 因子代码实现

def MA_factor(df, n=20):
    """
    计算移动平均线(MA)因子
    
    参数:
    df (DataFrame): 输入数据
        - code: 证券代码,如'600036.SH'
        - date: 日期,格式为'YYYY-MM-DD'
        - close: 收盘价
    n (int): 移动平均周期,默认20
    
    返回:
    DataFrame: 包含原有列和MA因子值,理论取值范围(-∞,+∞),实际大多在[-3,3]之间
    注意:
        1. 返回数据包含所有输入列
        2. 新增MA列为因子值
        3. date列保持原有字符串格式'YYYY-MM-DD'
        4. 数据将按code分组、date倒序排列
    """
    import numpy as np
    import pandas as pd
    
    # 创建副本避免修改原始数据
    df_copy = df.copy()
    
    # 检查code格式
    valid_codes = df_copy['code'].str.match(r'^(?:\d{6}\.(SH|SZ)|[A-Z]+/[A-Z]+|\w+\.(IB|CFE|US))$')
    if not valid_codes.all():
        raise ValueError("Invalid code format found")
    
    # 检查date格式
    valid_dates = df_copy['date'].str.match(r'^\d{4}-\d{2}-\d{2}$')
    if not valid_dates.all():
        raise ValueError("Invalid date format found, expected 'YYYY-MM-DD'")
    
    # 排序(使用字符串比较)
    df_copy = df_copy.sort_values(['code', 'date'], ascending=[True, False])
    
    # 按code分组计算
    def calculate_ma(group):
        # 计算简单移动平均
        ma = group['close'].rolling(window=n).mean()
        
        # 计算n周期滚动标准差
        rolling_std = group['close'].rolling(window=n).std()
        
        # 计算因子值
        group['MA'] = np.where(
            rolling_std != 0,
            (group['close'] - ma) / rolling_std,
            0
        )
        return group
    
    df_copy = df_copy.groupby('code', group_keys=False).apply(calculate_ma)
    
    # 按照最终要求重新排序并重置索引
    df_copy = df_copy.sort_values(['code', 'date'], ascending=[True, False]).reset_index(drop=True)
    
    return df_copy

参考数据:
在这里插入图片描述

6. 因子取值范围及其含义

MA因子的取值范围理论上是(-∞,+∞),但实际上大多数值会落在[-3,3]区间内:

  • 取值 > 2:表示价格显著高于MA(超过2个标准差),强烈超买信号
  • 取值在(1,2]之间:表示价格高于MA一个标准差以上,偏多信号
  • 取值在[-1,1]之间:表示价格在MA一个标准差范围内波动,震荡区间
  • 取值在[-2,-1)之间:表示价格低于MA一个标准差以上,偏空信号
  • 取值 < -2:表示价格显著低于MA(超过2个标准差),强烈超卖信号

7. 因子函数参数建议

  1. n (移动平均周期):
    • 默认值:20
    • 建议范围:[5, 120]
    • 参数说明:决定移动平均的平滑程度和滞后性
    • 选择建议:
      • 日线数据常用周期:
        • 短期:5、10、20日
        • 中期:30、60日
        • 长期:120、250日
      • 小时线数据建议使用较小的周期:5-30
      • 分钟线数据建议使用更小的周期:3-15
      • 高波动市场使用较大的周期
      • 低波动市场使用较小的周期
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI量金术师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值