BST: Behavior Sequence Transformer中的self attention过程详解

图1 BST网络结构
文章地址:Behavior Sequence Transformer for E-commerce Recommendation in Alibaba

1. BST网络简介

1.1 核心思想:WDL 和 DIN没有考虑序列间的相互依赖关系,本论文使用了NTM中transformer层的方法,来捕捉这种关系。

1.2 输入特征
输入特征有两部分:用户序列特征和其他特征(user, item, context, cross等)。其中用户序列中的每一个item有两部分组成:sequence item feature 和positional feature。注意图1,这里的用户序列也包含了target item及其position。

  • sequence item feature:使用item_id和category_id
  • positional feature: 商品 v i v_i vi的位置特征计算: p o s ( v i ) = t ( v t ) − t ( v i ) pos(v_i) = t(v_t)-t(v_i) pos(vi)=t(vt)t(vi),即商品的点击时间与当前target item的推荐时间之间的gap。这里加入的position feature相当于<<attention is all you need>>里的postitional encoding,只是本论文中没有使用sin/cos的编码方法,而是更直接地将postional feature与item feature进行了concat.

1.3 transformer layer

  • transformer layer主要实现了<<attention is all you need>>里的multi-head self attention + Point-wised FFN 结构(即encoder结构)

  • multi-head self attention:
    A t t e n t i o n ( Q , K , V ) = s o f t m a x ( Q K T d ) V (3) Attention(\boldsymbol {Q, K, V}) = softmax(\frac{\boldsymbol {QK}^{T}}{\sqrt d})\boldsymbol V \tag3 Attention(Q,K,V)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值