随机森林算法原理_机器学习算法——随机森林

随机森林是一种机器学习方法,适用于回归和分类问题,包含数据降维、缺失值处理等功能。它通过构建多个决策树并综合其结果来提高预测准确性。随机性的引入包括随机抽样和特征选取,降低了模型过拟合的风险。然而,随机森林在处理高噪声数据或属性取值不均衡的数据时可能表现不佳。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

943e28b8770f2495cadc57fe1958723f.png

随机森林简介

随机森林是一种通用的机器学习方法,能够处理回归和分类问题。它还负责数据降维、缺失值处理、离群值处理以及数据分析的其他步骤。它是一种集成学习方法,将一组一般的模型组合成一个强大的模型

工作原理

我们通过适用随机的方式从数据中抽取样本和特征值,训练多个不同的决策树,形成森林。为了根据属性对新对象进行分类,每个数都给出自己的分类意见,称为“投票”。在分类问题下,森林选择票数最多的分类;在回归问题下则适用平均值的方法。

随机森林是基于Bagging方法的集成模型,Bagging的示例如下:

dee5f35c7285a06d8b9af8ba89c54020.png

若每个分类模型都是决策树,那就构成了随机森林。Bagging方法通过抽样的方式获得多份不同的训练样本,在不同的训练杨版本上训练决策树,从而降低了决策树之间的相关性。同时还通过特征的随机选取,特征阈值的随机选取两种方式产生随机性,进一步降低决策树之间的相关性。

随机森林优缺点

优点:

  • 能够处理更高维度的大数据集,并能够识别最重要的变量,当作一种降维方法
  • 有效估计丢失值,保持较高准确性
  • 处理不平衡类数据集上的平衡问题
  • 袋外误差估计可以去除备用测试集
随机森林输入替换后数据样本称为自助抽样。其中三分之一的数据不用于训练但是可用来预测,被称为袋外样本。在这些袋外样本上估计的误差成为袋外误差。

缺点:

  • 随机森林已经被证明在某些噪音较大的分类或回归问题上会过拟合。
  • 对于有不同取值的属性的数据,取值划分较多的属性会对随机森林产生更大的影响,所以随机森林在这种数据上产出的属性权值是不可信的

随机森林优缺点参考:

一文看懂随机森林 - Random Forest(4个实现步骤+10个优缺点)​easyai.tech
7d2f201a63e18f236fab2c6f3a90ab57.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值