1. 基本概念
bias(偏差):描述估计中心到真实中心的距离。
variance(方差):描述样本点到估计中心的距离。
2. 通过bias和variance的概念,可以引出underfitting和overfitting的概念:
underfitting(欠拟合):如果模型不能拟合训练样本,则有较大的偏差。
overfitting(过拟合):如果模型可以较好的拟合训练样本,而不能拟合测试样本,则有较大的方差。
3. 解决方案
出现bias大时,需重新设计模型:
(1)增加输入的特征;
(2)增加模型的复杂度;
出现variance大时,需:
(1)增加训练数据(包括生成假数据)
(2)regularization(正则化,但可能会伤害bias)