机器学习中variance和bias的含义、影响及解决方案

本文探讨了bias(偏差)和variance(方差)在模型评估中的作用,解释了欠拟合和过拟合现象,并提供了调整策略:增加特征、提升模型复杂度应对偏大偏差,通过增大数据或正则化降低过高的方差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 基本概念

bias(偏差):描述估计中心到真实中心的距离。

variance(方差):描述样本点到估计中心的距离。

2. 通过bias和variance的概念,可以引出underfitting和overfitting的概念:

underfitting(欠拟合):如果模型不能拟合训练样本,则有较大的偏差。

overfitting(过拟合):如果模型可以较好的拟合训练样本,而不能拟合测试样本,则有较大的方差。

3. 解决方案

出现bias大时,需重新设计模型:

(1)增加输入的特征;

(2)增加模型的复杂度;

出现variance大时,需:

(1)增加训练数据(包括生成假数据)

(2)regularization(正则化,但可能会伤害bias)

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值