二分类交叉熵损失函数python_PyTorch学习笔记——二分类交叉熵损失函数

本文介绍了二分类任务中交叉熵损失函数的概念,详细讲解了PyTorch中BCELoss和BCEWithLogitsLoss的使用,并通过实例展示了如何计算损失。BCEWithLogitsLoss结合Sigmoid层,提供更好的数值稳定性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二分类任务交叉熵损失函数定义

多分类任务的交叉熵损失函数定义为:

其中

是向量,

表示样本预测为第c类的概率。

如果是二分类任务的话,因为只有正例和负例,且两者的概率和是1,所以不需要预测一个向量,只需要预测一个概率就好了,损失函数定义简化如下:

其中

是模型预测样本是正例的概率,

是样本标签,如果样本属于正例,取值为1,否则取值为0。

PyTorch中二分类交叉熵损失函数的实现

PyTorch提供了两个类来计算二分类交叉熵(Binary Cross Entropy),分别是BCELoss() 和BCEWithLogitsLoss()torch.nn.BCELoss()

类定义如下

torch.nn.BCELoss(

weight=None,

size_average=None,

reduction="mean",

)

用N表示样本数量,

表示预测第n个样本为正例的概率,

表示第n个样本的标签,则:

举个例子

im

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值