- 博客(13)
- 收藏
- 关注
原创 【论文复现】利用生成式AI进行选股和分配权重
摘要:本文探讨了生成式AI模型在投资组合选择中的应用,基于ChatGPT、文心一言等大语言模型推荐股票构建虚拟投资组合。通过多轮推荐筛选高频股票(如宁德时代、中国中免等),并让AI分配权重。实证分析显示,2022年ChatGPT构建的投资组合(亏损约10%)跑赢沪深300指数(亏损超20%)。研究验证了AI在投资决策中的潜力,但也指出需谨慎验证其输出结果。方法包括:1)多模型股票推荐与频率筛选;2)AI权重分配策略;3)历史回测验证表现。结果表明AI辅助投资组合具备一定超额收益能力。
2025-07-07 14:13:02
1195
原创 【生成式AI】愿你一路生花——手搓扩散模型
扩散模型助力乡村旅游宣传 摘要:岭南村凭借四季花海成功吸引游客后,周边村庄纷纷向省文旅厅申请宣传支持。面对大量村庄的拍摄需求,省文旅厅寻求科技厅帮助降低宣传成本。科技厅团队采用扩散模型技术,利用已有的花卉照片数据集生成新的宣传素材。扩散模型通过前向扩散(逐步添加噪声)和反向扩散(从噪声中重建图像)两个过程,能够创造多样化的花卉图像。该方法既避免了素材重复使用,又节省了实地拍摄成本,为乡村旅游宣传提供了创新解决方案。团队构建了基于U-net的扩散模型框架,并开发了图像生成和去噪功能,为后续的大规模应用奠定了基
2025-06-24 10:19:23
955
原创 【生成式AI】徒手搭建并训练一个GPT模型
我们已经让小L帮助S师姐她们初步了解了Transformer模型的基本知识。不过,X县的同志们有点坐不住了。他们看小L几个人一直在掰扯理论知识,却迟迟没有动手帮他们干活,但谈好的几个外国网红还等着文案录视频呢!于是不由得来催促小L赶快开始模型的搭建和训练工作。确实,理论讲得再好,也是不如把实际问题解决掉。接下来,咱们就让小L他们把GPT模型搭建出来,解决X县迫在眉睫的业务需求。
2025-06-20 11:06:51
917
原创 【生成式AI】如何在kaggle上调用Stable Diffusion创作图像
摘要:本文介绍了如何在Kaggle平台上使用免费GPU资源调用Stable Diffusion模型进行图像生成。内容包括:1) 安装必要的Python库(diffusers、transformers等);2) 获取Hugging Face访问令牌并配置到Kaggle;3) 导入模型组件(AutoencoderKL、CLIPTokenizer等)和设置超参数;4) 使用预训练模型创建图像生成Pipeline。整个过程避免了本地环境部署的麻烦,适合快速上手Stable Diffusion的实践应用。
2025-06-17 15:46:38
975
原创 【金融数据分析】用几何布朗运动模拟股票价格走势
摘要 本文介绍了几何布朗运动在金融领域的应用,重点探讨了如何使用几何布朗运动模型预测股票价格动态。文章首先回顾了几何布朗运动的理论发展历程,从巴舍利耶的早期贡献到伊藤清的随机微积分理论,再到布莱克-舒尔斯-默顿期权定价模型的应用。随后,通过Python代码示例展示了如何利用历史数据计算股票收益率和波动率参数,并定义几何布朗运动模拟函数,生成多条可能的未来股票价格路径。最终通过可视化结果,对比了模拟均值与实际收盘价的表现。
2025-06-12 10:12:52
627
原创 【金融数据分析】GARCH模型的基本原理与Python实现
【结果说明】上面的代码用于从已拟合的GARCH模型结果中获取最后一期的条件方差以及模型的参数。通过这一行代码,将这些参数的值分别赋给对应的变量。获取最后一期的条件方差是为了在模型的条件下计算下一期的波动率,从代码运行结果可以看到,通过这些参数,我们计算出了下一期的波动率约为1.102。【结果说明】在上面的代码中,在result.forecast()方法中,horizon参数表示你要预测的未来时期的数量,即预测的时间跨度。进行未来波动率的预测:使用模型的参数和最后一期的条件方差,可以进行未来波动率的预测。
2025-06-04 11:22:52
1014
原创 【金融数据分析】ARCH模型的基本原理与实现
摘要:本文介绍了ARCH模型的基本原理及其在金融时间序列分析中的应用。通过棉花期货价格数据示例,展示了如何使用Python的arch库实现ARCH(1)模型,包括数据预处理、模型拟合和结果可视化。文章重点阐述了异方差性的概念及其在金融数据中的表现,并详细解释了ARCH模型参数的含义。结果表明ARCH模型能有效捕捉金融时间序列的波动性特征,为后续的GARCH模型学习奠定了基础。
2025-05-28 11:04:34
888
原创 【金融数据分析】用Python开发一个技术分析面板
本文介绍了如何使用Streamlit和Python库(如AKShare、TA-Lib等)构建一个简单的技术分析面板,以便更便捷地进行金融数据分析。该面板允许用户通过下拉菜单选择期货品种,并设置起止日期以获取历史行情数据。用户还可以选择不同的技术指标(如MACD、布林带、RSI),并通过TA-Lib进行计算。最后,面板将历史行情的K线图和技术指标的计算结果进行可视化展示。通过这种方式,用户可以快速获取并分析金融数据,而无需每次重新运行代码。
2025-05-21 14:37:26
972
原创 【金融数据分析】用Python和TA-Lib计算技术指标
TA-Lib(Technical Analysis Library)是一个开源技术分析库,提供150多种技术指标,涵盖趋势、波动性、动能和周期分析等领域,适用于股票、期货和外汇市场。文章介绍了如何使用TA-Lib计算和可视化常见技术指标,包括均线(MA)、布林带(Bollinger Bands)和相对强弱指数(RSI)。均线用于平滑价格数据,布林带衡量价格波动性和趋势反转,RSI则用于识别超买和超卖情况。通过Python代码示例,展示了如何计算这些指标并绘制图表,帮助交易者分析市场动态和制定交易策略。
2025-05-14 15:26:54
1469
原创 【金融数据分析】用Python+TA-Lib识别K线形态
K线图形态是一种在技术分析中用于分析金融市场价格走势的方法,它通过观察K线图表中的不同K线形态来预测价格趋势的变化。这些K线形态通常以不同的名称和特定的形状来表示,如"多头吞没"、“倒锤头”、"早晨之星"等,每种形态都有不同的含义和预测能力。识别K线图形态对于交易者来说是一项重要的技能,它可以用来制定交易决策和预测市场趋势的转折点。为了进行实验,我们这次使用PVC期货连续合约的历史行情数据,这次我们选择2020年1月1日至2022年12月31日的数据。然后使用TA-Lib识别“早晨之星”和“锤头”形态。
2025-05-08 10:06:46
873
原创 【金融数据分析】使用Python与Pelt算法检测价格趋势变化
Pelt(Pruned Exact Linear Time)是一种变点检测算法,用于发现时间序列数据中的结构性变化点或突变点。
2025-05-06 10:32:16
482
原创 【金融数据分析】用Python绘制K线图,并添加均线和成交量
通常,较大的成交量可能伴随着价格趋势的延续,而较小的成交量可能伴随着价格趋势的转折。K线图提供了关于特定时间段内市场开盘价、收盘价、最高价和最低价的信息,以及价格趋势的展示。通过观察K线图,可以识别市场的支持和阻力水平,趋势的转折点以及价格的波动情况,从而制定更明智的交易策略。均线是一种平滑价格走势的方式,通过计算一段时间内的价格平均值,它可以减少价格波动的噪音,使趋势更加清晰。在这个示例中,我们使用了Plotly的Candlestick图来绘制K线图,传递了日期、开盘价、最高价、最低价和收盘价的数据。
2025-04-24 15:25:48
1070
原创 金融数据分析——实现波动率的计算
实现波动率(Realized Volatility)是一种用于测量资产价格波动性的指标,它基于已经发生的价格变动来计算波动性,与未来预测无关。它通常用于评估资产或市场的风险水平。
2025-04-21 16:10:45
535
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人