DataFrame.abs() |
用于返回 DataFrame 中每个元素的绝对值 |
DataFrame.all([axis, bool_only, skipna]) |
用于判断 DataFrame 中是否所有元素在指定轴上都为 True |
DataFrame.any(*[, axis, bool_only, skipna]) |
用于判断 DataFrame 中是否至少有一个元素在指定轴上为 True |
DataFrame.clip([lower, upper, axis, inplace]) |
用于截断(限制)DataFrame 中的数值 |
DataFrame.corr([method, min_periods, …]) |
用于计算 DataFrame 中各列之间的相关系数矩阵(Correlation Matrix) |
DataFrame.corrwith(other[, axis, drop, …]) |
用于计算当前 DataFrame 的每一列(或行)与另一个 Series 或 DataFrame 中对应列的相关系数 |
DataFrame.count([axis, numeric_only]) |
用于统计 DataFrame 中每列或每行的非空(非 NaN)元素数量 |
DataFrame.cov([min_periods, ddof, numeric_only]) |
用于计算 DataFrame 中每对列之间的协方差 |
DataFrame.cummax([axis, skipna]) |
用于计算 DataFrame 中每列或每行的累计最大值(cumulative maximum) |
DataFrame.cummin([axis, skipna]) |
用于计算 DataFrame 中每列或每行的累计最小值(cumulative minimum) |
DataFrame.cumprod([axis, skipna]) |
用于计算 DataFrame 中每列或每行的累计乘积(cumulative product) |
DataFrame.cumsum([axis, skipna]) |
用于计算 DataFrame 中每列或每行的累计和(cumulative sum) |
DataFrame.describe([percentiles, include, …]) |
用于快速生成数据集的统计摘要(summary statistics) |
DataFrame.diff([periods, axis]) |
用于计算 DataFrame 中相邻行或列之间的差值(差分) |
DataFrame.eval(expr, *[, inplace]) |
用于在 DataFrame 上下文中高效地执行字符串形式的表达式运算 |
DataFrame.kurt([axis, skipna, numeric_only]) |
用于计算 DataFrame 中每列或每行的峰度(Kurtosis) |
DataFrame.kurtosis([axis, skipna, numeric_only]) |
用于计算 DataFrame 中每列或每行的峰度(Kurtosis) |
DataFrame.max([axis, skipna, numeric_only]) |
用于计算 DataFrame 中每列或每行的最大值(maximum) |
DataFrame.mean([axis, skipna, numeric_only]) |
用于计算 DataFrame 中每列或每行的平均值(mean) |
DataFrame.median([axis, skipna, numeric_only]) |
用于计算 DataFrame 中每列或每行的中位数(median) |
DataFrame.min([axis, skipna, numeric_only]) |
用于计算 DataFrame 中每列或每行的最小值(minimum) |
DataFrame.mode([axis, numeric_only, dropna]) |
用于查找 众数(出现频率最高的值) 的方法 |
DataFrame.pct_change([periods, fill_method, …]) |
用于计算 百分比变化 的方法 |
DataFrame.prod([axis, skipna, numeric_only, …]) |
用于计算 每列或每行元素的乘积 的方法 |
DataFrame.product([axis, skipna, …]) |
用于计算 DataFrame 中每列或每行所有元素的乘积 |
DataFrame.quantile([q, axis, numeric_only, …]) |
用于计算 分位数(Quantiles) 的方法 |
DataFrame.rank([axis, method, numeric_only, …]) |
用于计算 DataFrame 中每列或每行元素的排名(rank) |
DataFrame.round([decimals]) |