红帽的RHEL AI(Red Hat Enterprise Linux AI)是一个基于开源项目InstructLab和IBM Research提供的Granite大型语言模型的基础模型平台。它旨在无缝开发、测试和运行生成式AI模型,以支持企业应用程序[1][2][5]。
具体来说,RHEL AI提供了一个集成的环境,使得企业能够利用这些先进的AI技术来增强其业务流程和服务。这个平台不仅包括了必要的软件和工具,还提供了与Red Hat Enterprise Linux兼容的可启动镜像,这使得部署更加简便[3]。
此外,RHEL AI还支持跨混合基础设施的部署,这意味着企业可以在不同的计算环境中(如私有云、公共云和边缘计算)高效地部署和管理AI/ML工作负载[13][14]。这种灵活性对于需要处理大量数据和复杂计算任务的企业尤为重要。
红帽通过RHEL AI展示了其在推动AI技术商业化和实际应用方面的努力,特别是在开源社区中的贡献,以及如何将这些技术融入到现有的产品线中,如Red Hat Insights和Ansible Lightspeed,从而提高效率和智能化水平[6][7][10]。
红帽的RHEL AI能够帮助企业无缝地开发、测试和部署高性能的生成式AI模型,支持多种计算环境,并且与红帽的其他产品紧密集成,以实现更广泛的业务应用和自动化。
红帽RHEL AI如何与InstructLab和IBM Research的Granite大型语言模型集成?
红帽RHEL AI与InstructLab和IBM Research的Granite大型语言模型集成主要体现在以下几个方面:
- 技术共享与平台支持:根据证据,IBM已经将其Granite AI模型开源,并且在InstructLab平台上进行了部署[19][21]。这意味着红帽RHEL AI可以利用这些开源的Granite模型来增强其AI功能。此外,红帽也推出了企业级Linux AI平台(RHEL AI),该平台同样使用了开源的Granite模型和InstructLab技术[20]。
- 降低混合云中的障碍:红帽SVP和首席产品官Ashesh Badani表示,通过结合InstructLab和RHEL AI,可以帮助解决跨越混合云环境中的人工智能应用面临的许多障碍,如数据科学资源的限制等[20]。
- 多语言支持与参数范围:IBM的Granite AI模型支持多种编程语言,并且参数范围从3亿到34亿不等[22]。这种灵活性使得红帽RHEL AI能够适应不同的业务需求,无论是小规模还是大规模的项目。
- 代码生成能力:特别值得一提的是,IBM还开源了一个名为granite.20b.code的200亿参数的代码生成模型,这个模型可以帮助开发人员和IT运营人员使用自然语言提示来生成代码[23]。这种集成可能会极大地提高开发效率和自动化水平。
RHEL AI支持哪些具体的生成式AI模型开发工具和软件?
RHEL AI支持的具体生成式AI模型开发工具和软件包括Ansible-Lightspeed。Ansible-Lightspeed是RedHat提供的一项服务,它利用自动化生成式AI来帮助Ansible开发人员更快、更好地开发Playbook。
如何在私有云、公共云和边缘计算环境中部署RHEL AI?
在私有云、公共云和边缘计算环境中部署RHEL AI,可以通过以下步骤进行:
- 私有云部署:
- 在私有云环境中,首先需要确保您的基础设施支持RHEL操作系统。可以选择使用Red Hat Enterprise Linux作为基础镜像,并根据需要配置网络和存储。
- 可以利用Red Hat OpenShift AI来集成数据、智能和机器学习软件,以执行端到端的机器学习工作流[31]。
- 公共云部署:
- 在公共云平台如Amazon Web Services (AWS)或Google Cloud Platform (GCP)上,您可以创建和部署RHEL系统镜像。这包括安装所需的软件包和代理、配置隔离等[26]。
- Google Cloud Platform允许您将Red Hat Enterprise Linux镜像部署为Google Compute Engine实例,这涉及到选择合适的镜像选项并理解基础镜像的配置[25]。
- 边缘计算部署:
- 边缘计算环境通常涉及到在网络的边缘位置(如近用户的地方)部署计算资源,以减少延迟并提高响应速度。在这种环境中,可以使用Red Hat Enterprise Linux和OpenShift来优化应用程序的构建和管理[30]。
- Red Hat OpenShift AI支持在边缘计算环境中的部署,可以作为红帽托管环境的附加组件安装,如Red Hat OpenShift Dedicated和Red Hat OpenShift Service on Amazon Web Services[31]。
- 技术和工具:
- 使用OpenShift AI,您可以在多种环境中部署受培训的模型,使其可作为服务使用API访问。这对于测试和实施智能应用程序至关重要[32]。
- OpenShift AI已在OpenShift 4.15 + RHODS 2.7.0的环境中验证,表明它支持高级功能如LLM模型的部署[33]。
无论是在私有云、公共云还是边缘计算环境中,部署RHEL AI都需要考虑操作系统的选择、必要的软件和服务的配置,以及如何有效地利用OpenShift AI来集成和管理机器学习工作流。
RHEL AI如何提高企业应用程序的性能和服务水平?
RHEL AI通过多种方式提高企业应用程序的性能和服务水平。首先,RHEL 7.1企业版支持最新的硬件设备,使得系统能够充分利用最新的硬件技术来提升性能[35]。此外,RHEL AI与Run:ai合作,将Run:ai的资源分配能力引入到Red H