【AIGC调研系列】红帽的RHEL AI能够做什么

红帽的RHEL AI(Red Hat Enterprise Linux AI)是一个基于开源项目InstructLab和IBM Research提供的Granite大型语言模型的基础模型平台。它旨在无缝开发、测试和运行生成式AI模型,以支持企业应用程序[1][2][5]。

具体来说,RHEL AI提供了一个集成的环境,使得企业能够利用这些先进的AI技术来增强其业务流程和服务。这个平台不仅包括了必要的软件和工具,还提供了与Red Hat Enterprise Linux兼容的可启动镜像,这使得部署更加简便[3]。

此外,RHEL AI还支持跨混合基础设施的部署,这意味着企业可以在不同的计算环境中(如私有云、公共云和边缘计算)高效地部署和管理AI/ML工作负载[13][14]。这种灵活性对于需要处理大量数据和复杂计算任务的企业尤为重要。

红帽通过RHEL AI展示了其在推动AI技术商业化和实际应用方面的努力,特别是在开源社区中的贡献,以及如何将这些技术融入到现有的产品线中,如Red Hat Insights和Ansible Lightspeed,从而提高效率和智能化水平[6][7][10]。

红帽的RHEL AI能够帮助企业无缝地开发、测试和部署高性能的生成式AI模型,支持多种计算环境,并且与红帽的其他产品紧密集成,以实现更广泛的业务应用和自动化。

红帽RHEL AI如何与InstructLab和IBM Research的Granite大型语言模型集成?

红帽RHEL AI与InstructLab和IBM Research的Granite大型语言模型集成主要体现在以下几个方面:

  1. 技术共享与平台支持:根据证据,IBM已经将其Granite AI模型开源,并且在InstructLab平台上进行了部署[19][21]。这意味着红帽RHEL AI可以利用这些开源的Granite模型来增强其AI功能。此外,红帽也推出了企业级Linux AI平台(RHEL AI),该平台同样使用了开源的Granite模型和InstructLab技术[20]。
  2. 降低混合云中的障碍:红帽SVP和首席产品官Ashesh Badani表示,通过结合InstructLab和RHEL AI,可以帮助解决跨越混合云环境中的人工智能应用面临的许多障碍,如数据科学资源的限制等[20]。
  3. 多语言支持与参数范围:IBM的Granite AI模型支持多种编程语言,并且参数范围从3亿到34亿不等[22]。这种灵活性使得红帽RHEL AI能够适应不同的业务需求,无论是小规模还是大规模的项目。
  4. 代码生成能力:特别值得一提的是,IBM还开源了一个名为granite.20b.code的200亿参数的代码生成模型,这个模型可以帮助开发人员和IT运营人员使用自然语言提示来生成代码[23]。这种集成可能会极大地提高开发效率和自动化水平。

RHEL AI支持哪些具体的生成式AI模型开发工具和软件?

RHEL AI支持的具体生成式AI模型开发工具和软件包括Ansible-Lightspeed。Ansible-Lightspeed是RedHat提供的一项服务,它利用自动化生成式AI来帮助Ansible开发人员更快、更好地开发Playbook。

如何在私有云、公共云和边缘计算环境中部署RHEL AI?

在私有云、公共云和边缘计算环境中部署RHEL AI,可以通过以下步骤进行:

  1. 私有云部署
    1. 在私有云环境中,首先需要确保您的基础设施支持RHEL操作系统。可以选择使用Red Hat Enterprise Linux作为基础镜像,并根据需要配置网络和存储。
    2. 可以利用Red Hat OpenShift AI来集成数据、智能和机器学习软件,以执行端到端的机器学习工作流[31]。
  2. 公共云部署
    1. 在公共云平台如Amazon Web Services (AWS)或Google Cloud Platform (GCP)上,您可以创建和部署RHEL系统镜像。这包括安装所需的软件包和代理、配置隔离等[26]。
    2. Google Cloud Platform允许您将Red Hat Enterprise Linux镜像部署为Google Compute Engine实例,这涉及到选择合适的镜像选项并理解基础镜像的配置[25]。
  3. 边缘计算部署
    1. 边缘计算环境通常涉及到在网络的边缘位置(如近用户的地方)部署计算资源,以减少延迟并提高响应速度。在这种环境中,可以使用Red Hat Enterprise Linux和OpenShift来优化应用程序的构建和管理[30]。
    2. Red Hat OpenShift AI支持在边缘计算环境中的部署,可以作为红帽托管环境的附加组件安装,如Red Hat OpenShift Dedicated和Red Hat OpenShift Service on Amazon Web Services[31]。
  4. 技术和工具
    1. 使用OpenShift AI,您可以在多种环境中部署受培训的模型,使其可作为服务使用API访问。这对于测试和实施智能应用程序至关重要[32]。
    2. OpenShift AI已在OpenShift 4.15 + RHODS 2.7.0的环境中验证,表明它支持高级功能如LLM模型的部署[33]。

无论是在私有云、公共云还是边缘计算环境中,部署RHEL AI都需要考虑操作系统的选择、必要的软件和服务的配置,以及如何有效地利用OpenShift AI来集成和管理机器学习工作流。

RHEL AI如何提高企业应用程序的性能和服务水平?

RHEL AI通过多种方式提高企业应用程序的性能和服务水平。首先,RHEL 7.1企业版支持最新的硬件设备,使得系统能够充分利用最新的硬件技术来提升性能[35]。此外,RHEL AI与Run:ai合作,将Run:ai的资源分配能力引入到Red H

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zachary AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值