go分析和kegg分析_GO和KEGG通路分析教程(二)

本教程深入解释GO和KEGG富集分析中的P值意义,通过超几何分布理解基因富集程度。P值越小,表示富集结果越显著。此外,介绍了韦恩图在显示基因功能关联中的应用,强调了不同背景基因数量对富集程度的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

   在教程(一)中最后有一个小问题,在从david数据库下载下方的表格时,并不能直接下载成xsl或csv格式的文件,下方实际上是点击download按钮后,用浏览器打开后,选择“全选“,然后粘贴到一个新的记事本中,再用excel打开,最后存成csv格式文件即可。

a5ef2ceb7e69bbeb9ec26719424a548d.png

  教程二主要讲解一下GO或KEGG富集分析中P值该如何理解。回忆一下t检验,t检验中P值代表了原假设成立条件下出现当前结果的概率值,一般以0.05和0.01作为两个阈值,但是近期P值这种一刀切的做法遭到了很多学者的联名反对,想一想之前天士力复方丹参滴丸在美国的试验也是因为显著性的问题遭到了打击,确实是非常可惜。但是在GO分析中,由于数据的结构,这时我们需要用超几何分布来描述随机过程中出现当前富集结果的概率值。先不谈这件事,我们先来看看基因富集分析的韦恩图表示情况。如下图所示:

b81abd6a8e5a8974393201117694976f.png

上图中总的背景基因就是我们所研究的物种的所有基因(也就是在教程一中我们在david数据库中所选择的background),红色矩形框中的基因是我们输入的基因,背景基因中功能A相关基因共150个,用黄色的圆圈表示,功能B相关基因共1000个用紫色的圆圈表示。如果我们输入的基因中有100个基因和黄色的圆圈重合,另有100个基因和紫色的圆圈重合,那么我们并不能说明我们输入的基因中功能A和B富集程度是一样

在生物信息学领域,基因功能的注释分析是一个复杂但至关重要的过程,其中GO数据库KEGG通路数据库扮演了核心的角色。首先,使用GO数据库进行基因功能注释时,你需要将你的基因列表与GO的三个核心本体(分子功能、生物过程、细胞成分)进行比对。这可以通过多种工具在线服务来完成,如DAVID、GOrilla或WebGestalt等。这些工具可以帮助你识别你的基因列表中哪些功能、过程细胞组件被富集,并进行功能富集分析,以发现哪些生物学过程在你的实验条件下特别活跃或受到抑制。 参考资源链接:[基因注释与功能分析GO数据库与KEGG通路](https://wenku.csdn.net/doc/15qu6bsnnp) 接着,要进行KEGG通路分析,你可以将从GO分析中获得的基因信息用于KEGG通路的映射。KEGG提供了一个丰富的平台,可以将基因映射到它们参与的代谢通路信号通路上。你可以使用KEGG的API或者在线分析工具,如KEGGMapper或GSEA(基因集富集分析),来分析你的基因列表在特定通路中的富集情况。例如,你可以发现你的基因列表是否在癌症通路或糖尿病通路中表现出显著的富集,从而提供对疾病机制的洞察。 在整个过程中,你需要处理大量的数据,并确保你的分析结果具有统计学意义生物学解释的合理性。因此,熟悉相关的统计方法生物信息学分析工具是非常必要的。此外,由于基因功能注释通路分析的结果往往高度依赖于所使用的数据库版本注释标准,因此保持对GOKEGG最新更新的关注也是很重要的。通过这种方法,你可以有效地挖掘基因数据,揭示生物学过程,并对相关的生物现象进行深入的理解。为了更全面地掌握这些技能,我推荐你查阅《基因注释与功能分析GO数据库与KEGG通路》这本书。该书不仅详细介绍了GOKEGG的使用方法,还包含了实际的项目案例分析,能够帮助你在生物信息学研究中有效地运用这些工具。 参考资源链接:[基因注释与功能分析GO数据库与KEGG通路](https://wenku.csdn.net/doc/15qu6bsnnp)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值