Padas是用于数据分析的最流行的python库。它提供了高度优化的性能,后端源代码纯粹是用C或Python。可以用来分析:Series、DataFrames。
Series系列是在熊猫中定义的一维(1-D)数组,可用于存储任何数据类型。
代码1:创作系列
# Program to create series # Import Panda Libraryimport pandas as pd # Create series with Data, and Indexa = pd.Series(Data, index = Index)
- 标量值可以是整值、字符串
- Python字典可以是键,值对
- Ndarray
可以通过Series的两个属性,index 和 value 来分别获取索引和值
obj.indexOut[5]: RangeIndex(start=0, stop=4, step=1) obj.valuesOut[7]: array([2, 9, 5, 6], dtype=int64)
代码2:当数据包含标量值时
# Program to Create series with scalar values # Numeric data Data =[1, 3, 4, 5, 6, 2, 9] # Creating series with default index values s = pd.Series(Data) # predefined index values Index =['a', 'b', 'c', 'd', 'e', 'f', 'g'] # Creating series with predefined index values si = pd.Series(Data, Index)
输出量:

代码3:当数据包含字典时
# Program to Create Dictionary series dictionary ={'a':1, 'b':2, 'c':3, 'd':4, 'e':5} # Creating series of Dictionary type sd = pd.Series(dictionary)
输出量:

代码4:当数据包含Ndarray时
# Program to Create ndarray series # Defining 2darray Data =[[2, 3, 4], [5, 6, 7]] # Creating series of 2darray snd = pd.Series(Data)
输出量:

Series 索引的name和值 的name(相当于这两个向量的名字)
obj3.nameobj3.name="population"obj3.index.name="ind"obj3Out[23]: indb 2.0a 1.0d NaNName: population, dtype: float64

DataFrames:
DataFrames是在熊猫中定义的由行和列组成的二维(2-D)数据结构。是一个典型的表格型数据,既有行索引,又有列索引。相当于一个大字典,字典的键是列索引,字典的值是一个Series; 构成这些索引的每一个值 的Series都是共用一个 Series 索引的。
代码1:创建DataFrame
# Program to Create DataFrame # Import Libraryimport pandas as pd # Create DataFrame with Dataa = pd.DataFrame(Data)
在这里,数据可以是:
- 一个或多个字典
- 一个或多个系列
- 2D-Numpy Ndarray
代码2:当数据是字典时
# Program to Create Data Frame with two dictionaries # Define Dictionary 1dict1 ={'a':1, 'b':2, 'c':3, 'd':4} # Define Dictionary 2 dict2 ={'a':5, 'b':6, 'c':7, 'd':8, 'e':9} # Define Data with dict1 and dict2Data = {'first':dict1, 'second':dict2} # Create DataFrame df = pd.DataFrame(Data)
输出量:

DataFrame 默认通过 列索引获取一个series;(在series中默认通过索引获取一个值)
df["popular"] 或者 df.popularOut[37]: 0 81 92 103 11Name: popular, dtype: int64
代码3:当数据是序列时
# Program to create Dataframe of three series import pandas as pd # Define series 1s1 = pd.Series([1, 3, 4, 5, 6, 2, 9]) # Define series 2 s2 = pd.Series([1.1, 3.5, 4.7, 5.8, 2.9, 9.3]) # Define series 3s3 = pd.Series(['a', 'b', 'c', 'd', 'e']) # Define DataData ={'first':s1, 'second':s2, 'third':s3} # Create DataFramedfseries = pd.DataFrame(Data)
输出量:

DataFrame 通过 ix 间接获取行向量,行向量也是一个series,它的索引是原来DF的列索引。
df.loc[2]Out[40]: cities bjyear 2003popular 10Name: 2, dtype: object
代码4:当数据为2D-numpy ndarray时注:在创建2D数组的DataFrame时,必须维护一个约束--2D数组的维数必须相同。
# Program to create DataFrame from 2D array # Import Libraryimport pandas as pd # Define 2d array 1d1 =[[2, 3, 4], [5, 6, 7]] # Define 2d array 2d2 =[[2, 4, 8], [1, 3, 9]] # Define DataData ={'first': d1, 'second': d2} # Create DataFramedf2d = pd.DataFrame(Data)
输出量:
