四川服务器磁盘阵列卡电池性能,内置磁盘阵列卡的不足之处

本文对比了硬件RAID与内置磁盘阵列卡在数据安全、系统独立性、易用性、扩展性、性能和资源占用等方面的特点。硬件RAID因其高可靠性、独立性和强大的故障检测能力受到青睐,而内置磁盘阵列卡在主机依赖性、扩展性和资源占用上存在不足。硬件RAID的外置阵列控制器提供了更高的冗余度和热拨插功能,且在双机支持和维护上更具优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【IT168 技术】RAID技术分为软件RAID和硬件RAID两大类。而硬件RAID技术又分为内置磁盘阵列卡技术和外置阵列控制器(即磁盘阵列)技术两大类。而且外置阵列控制器(即磁盘阵列)技术又以高性能、高可靠性,易使用易维护、高通用性、高扩展性等更胜一筹。从而为广大用户所采用。下面就内置磁盘阵列卡技术和外置阵列控制器技术作一比较,供参考。

1.内置磁盘阵列卡安装在主机(主板)上,受主机影响。安装需驱动软件。与主机类型、操作系统等有关。主机故障(如停电等)会直接影响到存储数据及RAID的完整性。

外置磁盘阵列与主机和操作系统完全独立(本身带硬件RAID控制器)。是一个独立的存储子系统。与主机通过SCSI电缆连接,无需任何软件驱动或硬件支持,只需主机提供标准SCSI接口即可。数据安全及RAID的完整性与主机等无关。

2.内置磁盘阵列卡当主机改变或操作系统改变时,阵列卡就可能要更换,因为磁盘阵列卡是与主机类型及操作系统相关的,如今后采用SUN机器原时磁盘阵列卡就不能用了,必须选用SUN的磁盘阵列卡。

外置磁盘阵列当主机改变或操作系统改变时,磁盘阵列无需更换,可继续采用。因为前述外置磁盘阵列与主机或操作系统完全独立,相当于一个SCSI设备而已。

3.内置磁盘阵列卡RAID的设置通过DOS下改BIOS等实施。较难维护

外置磁盘阵列通过多种方式实施。亦可直接在磁盘阵列的面板上通过菜单设置,非常直观容易。易操作,易维护。

4.内置磁盘阵列卡的硬件的冗余程度及热拨插功能一般要低于外置磁盘阵列。

A.磁盘阵列卡安装在主机上,受主机故障(如电源)的影响。

B.一般只支持RAID0,1,5。

C.硬件除硬盘冗余热插拨外,如电源、风扇等无法配置,只能依靠主机。

外置磁盘阵列的硬件冗余程度及热拨插功能远高于内置阵列卡,从而提供更高的可靠性。

A.与主机完全独立,主机故障时存储子系统无影响。

B.支持RAID0,1,3,5,0+1且支持8个RAID,每个RAID又可支持8个分区。

C.除硬盘冗余热拨插外,电源、风扇等均冗余且热拨插配置。

5.内置磁盘阵列卡方式提供的环境监测、警示,故障检测能力低于外置磁盘阵列方式。

一般而言,内置磁盘阵列卡方式能提供硬盘故障报警显示,而如风扇、电源、温度等异常则无法提供。而且警告方式比较单一。

外置磁盘阵列方式提供完善的环境监测、警示,故障检测功能。即提供硬盘、风扇、电源、控制器等异常情况监测警示,并以声音、光线,LCD面板显示等三重方式在故障部位同时显示。准确确定故障类型,位置,再加上冗余热拨插设计,确保整个存储子系统不中断运行并在工作状态下进行维护。从而可用性,可靠性比内置磁盘阵列卡方式更高。

6.扩容能力不如外置磁盘阵列,一般磁盘阵列卡再多3个通道每个通道接7个硬盘计,仅为21个硬盘。

外置磁盘阵列扩展能力高,通道数量最多可至8个,1个接主机,7个接硬盘,按每个通道接7个硬盘计,可接49个硬盘。再加上与主机完全独立,使得扩容(增加盘箱)更为灵活。

7.可通过RAID管理界面完成可支持线扩容

支持在线扩容,自动重建。

8.一般只支持一个RAID,支持局部热拨插盘。

支持多达8个RAID,且每个RAID支持多达8个分区,又支持多个局部或全局热拨插盘。

9.采用较低档次cpu,又与主机密切相关,性能较差。

采用较高档次 cpu又与主机无关,性能更好。

10.磁盘阵列卡占用部分主机资源,导致主机性能有所下降。

与主机无关,不占用主机资源。

11.对双机的支持差些。双机后占用部分服务器资源,从而系统性能有所下降,而且切换时间长。

对双机支持好,双机时基本上不占用服务器资源,切换时间短(40秒以内)

以上比较来看,内置磁盘阵列卡的不足之处尤为明显。

内容概要:本文档详细介绍了基于MATLAB实现的多头长短期记忆网络(MH-LSTM)结合Transformer编码器进行多变量时间序列预测的项目实例。项目旨在通过融合MH-LSTM对时序动态的细致学习和Transformer对全局依赖的捕捉,显著提升多变量时间序列预测的精度和稳定性。文档涵盖了从项目背景、目标意义、挑战与解决方案、模型架构及代码示例,到具体的应用领域、部署与应用、未来改进方向等方面的全面内容。项目不仅展示了技术实现细节,还提供了从数据预处理、模型构建与训练到性能评估的全流程指导。 适合人群:具备一定编程基础,特别是熟悉MATLAB和深度学习基础知识的研发人员、数据科学家以及从事时间序列预测研究的专业人士。 使用场景及目标:①深入理解MH-LSTM与Transformer结合的多变量时间序列预测模型原理;②掌握MATLAB环境下复杂神经网络的搭建、训练及优化技巧;③应用于金融风险管理、智能电网负荷预测、气象预报、交通流量预测、工业设备健康监测、医疗数据分析、供应链需求预测等多个实际场景,以提高预测精度和决策质量。 阅读建议:此资源不仅适用于希望深入了解多变量时间序列预测技术的读者,也适合希望通过MATLAB实现复杂深度学习模型的开发者。建议读者在学习过程中结合提供的代码示例进行实践操作,并关注模型训练中的关键步骤和超参数调优策略,以便更好地应用于实际项目中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值