引言
在信号处理和数字通信中,方波是非常常见的一种波形。方波是一种周期性波形,信号在两个固定的幅度之间跳跃,通常是“高”与“低”的状态。你可能会问,如何通过数学模型来表示一个方波呢?今天,我们就来聊聊如何使用傅里叶级数(Fourier Series)和 Python 来表示方波。
什么是傅里叶级数?
傅里叶级数是一个非常强大的数学工具,它可以将一个周期性信号分解为一系列简单的正弦波和余弦波的叠加。换句话说,任何一个周期性信号,都可以通过不同频率、不同幅度的正弦波和余弦波的组合来表示。这些正弦波和余弦波的频率、幅度和相位可以通过傅里叶级数来计算。
方波的傅里叶级数展开
假设我们有一个周期性方波信号,定义为:
- 在一个周期内,信号从 0 跳跃到 1,再跳回 0。
- 方波信号是一个不连续的、只有两种状态(0 和 1)变化的波形。
我们可以通过傅里叶级数将其表示为无穷多个正弦波的叠加。具体来说,方波的傅里叶级数展开式可以写成:
f(t)=4π(sin(ωt)+13sin(3ωt)+15sin(5ωt)+⋯ )f(t) = \frac{4}{\pi} \left( \sin(\omega t) + \frac{1}{3} \sin(3\omega t) + \frac{1}{5} \sin(5\omega t) + \cdots \right)f(t)=π