【基于C# + HALCON的工业视系统开发实战】十四、车身焊点全自动质检:Halcon多模态融合与机器人引导技术

摘要:本文介绍基于C#与Halcon的车身焊点全自动检测系统,采用可见光+热成像多模态融合技术,实现虚焊、过烧等缺陷的精准识别。系统通过仿射变换配准双模态图像,结合焊点几何特征与温度分布分析(虚焊温度<150℃,过烧>400℃),检测精度达99.2%。机器人引导模块通过EtherCAT实时通信(响应≤30ms)实现自动重焊。相比人工检测,全检覆盖率提升233%,效率达120点/分钟。硬件采用500万像素工业相机+FLIR热像仪,软件基于Halcon 24.11与.NET Core 6开发,满足汽车焊装线60JPH节拍需求。


AI领域优质专栏欢迎订阅!

DeepSeek深度应用

机器视觉:C# + HALCON

人工智能之深度学习

AI 赋能:Python 人工智能应用实战

AI原生应用开发实战:从架构设计到全栈落地


在这里插入图片描述



【基于C# + HALCON的工业视系统开发实战】十四、车身焊点全自动质检:Halcon多模态融合与机器人引导技术


关键词

车身焊点检测;多模态融合;虚焊识别;过烧检测;机器人引导;Halcon 24.11;C# .NET Core 6


一、车身焊点检测技术背景与行业需求

1.1 焊点质量的核心影响

汽车车身由3000-5000个焊点连接(图1-1),其质量直接关系:

  • 碰撞安全性:单个虚焊焊点可使车身强度降低15%,某碰撞测试显示,焊点缺陷导致车身溃缩量增加30%
  • 耐久性:过烧焊点的疲劳寿命仅为合格焊点的60%,易在使用3-5年后出现锈蚀、开裂
  • 制造成本:焊点缺陷导致的返工率每增加1%,单车制造成本上升约200元

行业标准对焊点的要求(GB/T 18226-2019):

缺陷类型 判定标准 风险等级
虚焊 熔深<0.3倍板厚,温度<150℃ 高(可能导致结构断裂)
过烧 熔深>0.8倍板厚,表面凹陷>0.5mm 中(加速锈蚀)
偏移 焊点中心偏离基准位置>2mm 中(局部应力集中)

1.2 传统检测方法的局限性

1.2.1 人工目视检测
  • 漏检率高:强光环境下难以识别细微虚焊(占缺陷总数的70%),抽检模式导致30%的缺陷未被发现
  • 效率低下:熟练工人每分钟最多检测20个焊点,无法匹配焊装线节拍(60JPH,即每小时60台车)
  • 主观性强:不同质检员对“过烧”的判定一致性仅65%,导致质量波动
1.2.2 超声/射线检测
  • 非在线检测:需离线抽样,无法实时反馈调整焊接工艺
  • 成本高昂:超声设备单价超50万元,射线检测需防护设施,每台车检测成本增加300元
  • 速度慢:单焊点检测耗时3-5秒,不适合量产线

1.3 多模态融合检测的技术优势

本系统通过“可见光+热成像”多模态融合与机器人引导,解决传统方法的痛点:

指标 人工检测 本系统 提升幅度
检测覆盖率 30%(抽检) 100%(全检) +233%
缺陷识别准确率 75% 99.2% +32.3%
检测效率 20点/分钟 120点/分钟 +500%
响应时间 无实时反馈 ≤30ms -

二、核心技术原理

2.1 多模态成像的必要性

单一模态成像无法全面表征焊点质量:

  • 可见光成像:可清晰呈现焊点的几何特征(形状、直径、偏移量),但无法区分虚焊(外观与合格焊点相似)
  • 热成像:通过焊接后的温度分布判断熔深(虚焊温度低,过烧温度高),但难以精确定位焊点位置

多模态融合通过空间配准将两种图像的优势结合(图2-1):

可见光图像
焊点定位(几何特征)
热成像图像
温度分布(熔深特征)
多模态融合
缺陷判定

2.2 多模态图像配准原理

由于可见光相机与热像仪的安装位置不同,需通过仿射变换实现空间对齐:

  1. 特征点匹配:在两种图像中识别相同的基准点(如车身孔位、边缘)
  2. 变换矩阵计算:通过VectorToHomMat2d函数求解仿射变换矩阵(旋转、平移、缩放)
  3. 图像变换:将热成像图像映射到可见光坐标系,配准误差≤0.5像素

数学模型
仿射变换公式为:
[ x ′ y ′ 1 ] = [ a b c d e f 0 0 1 ] [ x y 1 ] \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} xy1 = ad0be0cf1 xy1
其中, ( x , y ) (x,y) (x,y)为热成像图像坐标, ( x ′ , y ′ ) (x',y') (x,y)为配准后的可见光坐标,矩阵参数通过最小二乘法求解。

2.3 焊点缺陷检测原理

2.3.1 虚焊检测

虚焊因焊接电流不足或时间过短,导致熔深不足,表现为:

  • 热特征:焊接后温度低(<150℃,合格焊点温度200-300℃)
  • 几何特征:焊点直径偏小(<4mm),圆度偏差大(<0.8)
2.3.2 过烧检测

过烧因电流过大或时间过长,导致母材过度熔化,表现为:

  • 热特征:温度过高(>400℃),热影响区(HAZ)大(>8mm)
  • 几何特征:表面凹陷(>0.5mm),边缘飞溅多

2.4 机器人引导原理

检测到缺陷后,系统通过EtherCAT协议向焊接机器人发送补偿指令:

  1. 计算缺陷焊点的精确位置(相对于基准坐标系)
  2. 生成重焊路径(偏移量、电流调整值)
  3. 机器人接收指令后执行重焊,响应时间≤30ms

三、硬件系统设计与配置

3.1 整体硬件架构

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI_DL_CODE

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值