YOLOv8结合SCI低光照图像增强算法!让夜晚目标无处遁形!

本文介绍了将SCI低光照图像增强算法与YOLOv8目标检测算法结合的方法,提升夜晚目标检测性能。通过SCI算法增强图像亮度和对比度,YOLOv8能更准确识别夜晚目标。应用场景包括夜间安防、自动驾驶等,源代码已开源在GitHub。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

介绍

在计算机视觉领域,低光照环境下的目标检测一直是一个具有挑战性的任务。本文将介绍如何将YOLOv8目标检测算法与SCI(自校准照明)低光照图像增强算法相结合,实现在夜间或低光照条件下的高效目标检测。

引言

传统的目标检测算法在光照条件良好的情况下表现优异,但在低光照环境下性能会显著下降。SCI算法是一种先进的低光照图像增强方法,能够有效提升图像的可视性。通过将SCI作为预处理步骤与YOLOv8结合,我们可以显著提升模型在黑暗环境中的检测能力。

技术背景

YOLOv8简介

YOLOv8是Ultralytics公司推出的最新一代YOLO(You Only Look Once)目标检测算法,具有速度快、精度高的特点,支持分类、检测和分割任务。

SCI算法简介

SCI(Self-Calibrated Illumination)是一种基于深度学习的低光照图像增强算法,能够自适应地调整图像光照,同时保持图像的自然性和细节。

应用使用场景

  1. 夜间安防监控
  2. 自动驾驶夜间场景感知
  3. 无人机夜间巡检
  4. 军事夜间侦察
  5. 医学低光照图像分析

完整代码实现

环境准备

# 安装
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值