python如何做敏感度分析_Python中的模型敏感度分析(使用Salib)

本文介绍了敏感度分析的基本概念及其在数学建模中的重要性,探讨了不同类型的敏感度分析方法,如OAT、Screening、基于偏导数的方法等。重点讲解了在Python中使用SALib库进行敏感度分析的步骤,包括Sobol、Morris等方法,并提供了一个具体示例,展示了如何通过SALib分析模型输出对输入参数的敏感性。此外,还提到了SALib的可视化功能及其在实际应用中的注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

敏感度分析的基础概念

文本主要参考了维基百科(对其中的关键部分进行了摘选了翻译):https://en.wikipedia.org/wiki/Sensitivity_analysis​en.wikipedia.org

敏感度分析是指对一个模型输出中的不确定性进行研究,并进一步判断不确定性的来源,也就是研究哪个输入参数的改变造成的输出变化的程度大小. 所以灵敏度分析是进行数学建模过程中一个必不可少的常规步骤.

选择敏感度分析方法的时候需要考虑的要素:每运行一次模型的计算代价

输入参数之间的相关性

模型的响应是否非线性

输入因素之间的相互作用

已有数据的输入范围

常见的敏感度分析方法(跳过了傅里叶分析相关的方法,只有最后两个方法是全局分析):One at a time(OAT) 方法每次变动一个输入并检查对于输出的影响。

这种方法很简单,但由于它没有考虑输入变量的同时变化,因此并未充分探索输入空间。也无法检测输入变量之间是否存在交互。

Screening方法窗口法是一种基于采样的方法。目的是要确定哪些输入变量对高维模型中的输出不确定性有重大影响,而不是准确地量化灵敏度。

它具有相对较低的计算成本,并且可以在对其余集合应用更具信息性的分析之前,用于初步分析中以清除无影响的变量。

最常用的筛选方法之一是基本效应方法(moris方法)

散点图法

基于偏导数的局部分析法检查输出对于各个输入的偏导数

也无法充分探索输入空间

Adjoint modelling and Automated Differentiation 都属于这类方法

回归分析在敏感性分析的背景下,回归分析包括将线性回归拟合到模型响应,并使用标准化回归系数作为敏感性的直接度量。

因此,当模型响应实际上是线性时,此方法最合适。例如,如果确定系数大&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值