
AI大模型应用开发
文章平均质量分 82
致力于推动人工智能的发展,打造AI人专属的学习交流平台。
聚客AI
更多AI大模型应用开发学习内容,尽在聚客AI学院(https://edu.guangjuke.com)
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
自注意力机制升级!Meta三线性注意力如何提升推理准确率12.8%
拆解 Transformer 核心机制,从 Token 概率、Embedding 向量到自注意力原理,结合可视化和微调实操,理解大模型如何真正“读懂语言”。原创 2025-07-15 15:21:54 · 518 阅读 · 0 评论 -
零基础定制Agent:动态提示模板+工具路由配置代码详解
多Agent协同通过分工协作强化企业搜索分析,结合RAG融合多源信息与推理链,并行检索提升效率,实战演练搜索+分析场景,并解决死循环等常见问题,实现灵活决策。原创 2025-07-14 14:50:25 · 340 阅读 · 0 评论 -
LangChain专家养成:工具扩展/Agent决策/记忆控制三维进阶
详细介绍LangChain如何高效串联搜索、记忆与工具调用功能,实操Prompt设计、Agent构建与决策链路,快速打造智能、高效、灵活的自动化AI工作流原创 2025-07-13 15:26:55 · 406 阅读 · 0 评论 -
性能暴涨950%!揭秘MCP负载均衡优化方案
本文介绍了MCP与FunctionCall的本质差异及MCP协议的跨工具会话优势,重点讲解了MCP服务的环境配置、问题解决方案和开发实践。内容包括:MCP协议的JSON-RPC实现、UV工具替代pip的安装方案、IP查询服务开发示例、AI协作提示词工程模板,以及从本地开发到生产部署的全流程指南。文章还提供了企业级应用场景和性能优化建议,强调MCP在提升开发效率方面的重要价值,如将传统客服系统开发从2天缩短至4小时。文末附赠详细技术文档,帮助开发者掌握这一AI应用开发新范式。原创 2025-07-11 16:21:02 · 642 阅读 · 0 评论 -
搜索引擎vs向量数据库:LangChain混合检索架构实战解析
本文介绍了LangChain在信息检索与RAG(检索增强生成)应用中的核心技术方案。主要内容包括:1)实时搜索集成方案,通过DuckDuckGo和自建SearxNG实现不同场景的搜索需求;2)RAG数据工程流程,涵盖多格式文档加载、高级表格提取和动态语义分块技术;3)向量数据库实战,以ChromaDB为例展示初始化、写入与查询操作;4)完整的RAG问答系统实现方案,包含混合检索链和动态路由机制。文章还提供了生产环境优化建议和性能指标,为开发者构建高效的大模型应用提供了实用指导。原创 2025-07-10 15:12:34 · 914 阅读 · 0 评论 -
[特殊字符] LangChain组件拆解:Data Connection如何解决LLM知识滞后?
本文介绍了LangChain框架的核心理论与应用开发实践。主要内容包括:1)LangChain通过模块化组件解决大语言模型三大局限;2)链式编程范式(LCEL)构建应用流程,包括文档总结、翻译等典型案例;3)数据处理流程实现知识库构建;4)Model I/O与Memory模块实现动态提示和对话管理;5)Agents系统开发多工具智能代理;6)智能翻译助手开发实战;7)性能监控与生产部署方案。原创 2025-07-09 14:58:01 · 536 阅读 · 0 评论 -
树状结构RAG优化七步法:从节点压缩到混合检索全拆解
本文首次公开结构化树状数据的RAG全链路优化方案,通过独创的路径感知混合嵌入算法和动态子树分块策略,成功在工业级场景中将召回率提升25-40%、延迟降低30-50%。我们将深度拆解七层优化架构:从智能节点文本化压缩、结构敏感的元数据设计,到LangChain与LlamaIndex的树状索引整合,并附可复用的Python核心代码。跟随文中的企业组织架构实战案例,您将掌握让LLM精确解析层级关系的关键技术矩阵,彻底激活树状数据的商业价值。原创 2025-07-08 14:29:04 · 744 阅读 · 0 评论 -
从Prompt到预训练:掌握大模型核心技术的阶梯式进化
摘要:文章系统介绍了大型语言模型(LLM)开发的四个关键技术阶段:1)提示工程(Prompt Engineering)通过优化输入提示引导模型输出;2)AI代理(AIAgent)整合LLM能力实现自主决策与工具调用;3)微调(Fine-tuning)用领域数据优化预训练模型;4)预训练(Pre-training)通过海量无监督数据建立基础模型。原创 2025-07-07 13:41:42 · 1433 阅读 · 0 评论 -
Embedding技术革命:OpenAI三代模型全解构(附完整代码案例)
本文介绍了OpenAI文本嵌入技术及其应用。首先阐述了嵌入的本质是将离散对象映射到连续向量空间,核心特性包括稠密向量、距离敏感和可计算性。重点分析了text-embedding-3系列模型的创新点,如维度可调技术和性能-成本平衡。文章详细解读了ada系列的架构设计和第三代升级亮点,并提供了电商评论情感分析和医疗数据增强等工程实践案例。最后分享了自定义嵌入适配和混合检索等高级优化技巧,建议根据场景需求选择合适的模型版本。原创 2025-07-06 16:01:01 · 775 阅读 · 0 评论 -
深入大模型调优核心:提示工程分层架构、CoT优化与RL自动迭代详解
本文介绍了AI大模型提示工程的核心技术与实践方案。主要内容包括:1)分层提示设计架构,展示上下文层、任务层和格式层的代码实现;2)动态上下文管理、多级文本摘要、思维链优化等核心技术;3)工业级优化体系,如自动化评估和强化学习优化器;4)工程化架构,包括混合提示管道和自适应引擎;5)可视化调试工具;6)企业级最佳实践。该方案可提升300%的工程效率,提高45%的输出质量。原创 2025-07-04 14:49:34 · 513 阅读 · 0 评论 -
干掉传统NLP流水线!MCP协议让情感分析进入交互时代
1、MCP Sampling 采样原理解析2、Sampling 的最佳实践3、利用 Sampling 实现微博内容的情感分析4、基于情感分析的模型增量微调5、MCP 协议重大更新(2025-06-18):功能增强,安全升级!6、企业如何快速通过MCP赋能传统业务领域智能升级7、AI时代如何快速抓住时代红利,实现自我蜕变8、深度解析2025年AI最新技术方向及学习路径原创 2025-07-03 14:48:14 · 720 阅读 · 0 评论 -
AI工程化革命:MCP三层架构全场景代码实战
摘要:MCP协议作为大模型与外部系统的"神经枢纽",采用解耦设计实现动态扩展与安全管控。文章详细解析了JSON-RPC消息格式、Client-Server交互流程,并提供Python开发示例(包括工具注册、SSE实现等)。重点介绍了FastMCPV2框架的进阶特性(统一端点管理、上下文共享)和部署最佳实践(性能优化、安全防护)。通过数学问答应用案例,展示了从工具调用到企业级集成的完整开发流程。该技术可有效连接大模型与业务系统,是AI落地应用的关键桥梁。原创 2025-07-02 21:53:47 · 1441 阅读 · 0 评论 -
智能体瘦身实战:ONNX转换器+TensorRT加速器+显存监控仪
《AI模型轻量化部署实战指南》摘要:本文详细介绍了从大模型到高效部署的完整优化路径。关键步骤包括:1)通过ONNX转换实现模型跨平台兼容和30%体积缩减;2)使用TensorRT加速引擎实现推理速度2倍提升;3)结合FastAPI构建高并发服务。实测显示优化后RTX4060显卡可流畅运行Llama3-8B模型,单卡RTX4090能支持400+并发。文章特别强调动态尺寸设置、半精度优化等实战技巧,并提供了显存监控、精度保留等生产环境解决方案。原创 2025-07-01 14:01:28 · 784 阅读 · 0 评论 -
大模型工程落地新利器:MCP协议上手指南与最佳实践
用大白话一文讲清楚大模型中的万能钥匙MCP是什么?原创 2025-06-30 14:37:10 · 796 阅读 · 0 评论 -
AI大模型微调LoRA vs QLoRA终极对局!实测效果直逼全量微调
本文介绍了大语言模型微调的全套技术方案,重点对比了LoRA和QLoRA等高效微调方法。通过环境搭建、数据集构建、模型训练(包括4-bit量化技术)到部署落地的完整流程,展示了如何用消费级显卡微调70B级大模型,显存占用降低92%。文章包含详细的代码示例、性能评估对比和常见问题解决方案,为开发者提供了从理论到实践的完整指南。关键突破在于QLoRA技术使单卡微调超大规模模型成为可能,且效果接近全量微调。原创 2025-06-29 14:22:18 · 471 阅读 · 0 评论 -
万字长文|多智能体系统生产部署:监控看板+弹性扩缩容架构
本文介绍了多智能体系统(MAS)在电商领域的应用开发,重点解析了三大设计模式:1)集中式控制模式,通过AutoGen框架实现智能体协同;2)分布式通信模式,基于RabbitMQ实现智能体间消息路由;3)联邦学习模式,适用于医疗等隐私敏感场景。文章提供了电商促销系统的实战案例,展示如何通过多智能体协作提升35%的订单转化率,并详细介绍了企业级部署方案和生产环境避坑指南。开发者可掌握构建高可靠多智能体集群的核心技术,实现复杂业务场景的智能化解决方案。原创 2025-06-27 12:35:21 · 477 阅读 · 0 评论 -
智能体决策框架对决:ReAct极速响应 vs Plan-and-Execute稳控全局
文章系统对比了ReAct和Plan-and-Execute两种AI智能体框架的特点与应用场景。ReAct适合简单任务(工具调用≤3次),采用Thought-Action-Observation循环机制;Plan-and-Execute则擅长处理复杂多步骤任务,具备并行执行和动态规划能力。通过客服系统实战测试显示,Plan-and-Execute在复杂场景中的处理能力比ReAct高出5倍。原创 2025-06-26 14:03:28 · 1790 阅读 · 0 评论 -
RAG避坑指南:7大生产环境陷阱与破解之道
本文介绍了工业级RAG系统的优化方法,通过多路召回架构设计(向量检索、关键词检索、知识图谱检索)提升召回率65%。关键技术包括重排序优化(Cross-Encoder)、上下文压缩、强制源头引用等,可降低推理成本40%。文章详细展示了代码实现,并提供了企业级应用中的避坑指南,如知识图谱冷启动方案和资源消耗优化。最终构建的RAG系统能有效解决信息遗漏、噪声干扰等问题,确保答案可靠性和可追溯性。原创 2025-06-25 13:44:02 · 626 阅读 · 0 评论 -
企业级AI部署解密:ONNX/TensorRT/Triton终极指南
在AI工业化落地的浪潮中,高效开发与生产部署能力已成为核心竞争力。本文首次完整揭秘PyTorch和TensorFlow的三大进阶实战能力:标准化开发范式、工业级训练优化和生产线部署方案。通过对比演示混合精度训练、分布式加速、TensorRT部署等关键技术,您将掌握将大模型推理延迟降低80%、吞吐量提升7倍的硬核方法。更有企业级避坑指南和完整工具链(ONNX/Triton/Prometheus),带您突破GPU利用率瓶颈,解决OOM噩梦。原创 2025-06-24 14:01:21 · 1111 阅读 · 0 评论 -
【代码级指南】从Zero-shot到Chain-of-Thought:Prompt工程全栈技术解析
《Prompt工程核心技术精要》系统地介绍了从基础到进阶的Prompt设计方法。文章首先解析Prompt核心四要素框架,然后详细展示Zero-shot和Few-shot的实际应用案例,包括情感分析、多任务处理等场景。重点讲解了Chain-of-Thought推理技术及其编程实现,并提供工业级Prompt设计技巧如格式控制、负面约束等。此外,还分享了智能客服系统的实战案例、Prompt优化评估工具链以及自动优化等前沿发展方向。全文通过大量代码示例,为开发者提供了Prompt工程从理论到实践的完整解决方案。原创 2025-06-23 13:46:33 · 604 阅读 · 0 评论 -
提速200%的BERT微调术:混合精度+梯度累积实战代码详解
本文介绍了使用BERT模型进行文本分类任务的完整流程。主要内容包括:1) 环境准备与IMDB数据集加载;2) BERT数据处理与编码方法;3) 模型微调实战,包含训练配置、循环训练和可视化评估;4) 模型评估与推理API封装;5) 工业级优化技巧如混合精度训练和梯度累积;6) 任务扩展指南和部署优化方案。通过3小时训练可获得93%+准确率的分类模型,并提供了从开发到部署的完整解决方案。文章还包含实践中的常见问题处理建议。原创 2025-06-22 13:59:23 · 702 阅读 · 0 评论 -
⚡️ 参数高效革命!LoRA微调仅训0.1%参数达成90%效果
本文系统讲解大模型迁移学习核心技术,涵盖预训练模型架构解析(BERT/GPT/T5)、微调方法论及HuggingFace实战代码。重点剖析参数高效微调技术(LoRA/适配器),提供学习率策略、早停等黄金法则。通过典型场景分析(医疗/法律等)和避坑指南,指出80%场景下LoRA是最佳选择。包含完整代码示例,如分层学习率设置和适配器共享实现,助力开发者快速掌握大模型迁移学习核心技能。原创 2025-06-20 14:08:11 · 813 阅读 · 0 评论 -
⚙️ 从乱码到黄金数据:大模型预处理全流程拆解(含代码实战)
本文详解大模型开发中的数据处理全流程,涵盖TB级文本处理技术。主要内容包括:1)环境配置与100GB+文本处理方案,展示分布式数据加载与清洗方法;2)BPE、WordPiece和SentencePiece三种核心分词技术实现;3)高效数据管道构建,包含自定义Dataset类与优化DataLoader;4)性能优化技巧如流式处理、智能批处理;5)质量评估与监控方案。文章强调中文处理推荐SentencePiece,英文建议BPE/WordPiece,并提供数据处理黄金比例(90/5/5划分)等实战经验。原创 2025-06-19 13:48:41 · 593 阅读 · 0 评论 -
[特殊字符]【代码开源】Transformers工业级落地:轻量模型部署方案+混合精度训练
本文介绍了如何使用HuggingFace Transformers库实现NLP三大核心任务:文本分类、问答系统和命名实体识别。通过代码示例展示了从数据预处理、模型训练到推理预测的完整流程,包括使用预训练模型(如DistilBERT)进行情感分析、SQuAD问答和CoNLL-2003实体识别。文章还总结了迁移学习、动态填充等核心技巧,并建议根据硬件调整超参数,推荐使用轻量模型适应小显存设备。原创 2025-06-18 13:48:55 · 616 阅读 · 0 评论 -
⚡模型量化和部署技巧:Transformers工业级应用
本文全面解析Hugging Face Transformers库的核心功能,通过丰富示例和最佳实践,带你快速掌握预训练模型的加载、使用和微调技术。原创 2025-06-17 13:51:51 · 551 阅读 · 0 评论 -
⚡ 推理优化终极指南:5种技术大幅提升Transformer生成效率(含Beam Search详解)
本文深入解析Transformer模型的训练与推理机制,通过可视化图解和完整代码实现,系统讲解训练过程、自回归生成原理以及Beam Search优化策略。原创 2025-06-16 14:20:55 · 1081 阅读 · 0 评论 -
BERT终极手册:从数学原理到PyTorch代码的百科全书式解析
本文全面解析BERT的核心机制,深入讲解Masked Language Modeling和Next Sentence Prediction预训练任务,通过数学原理、架构设计和代码实现揭示BERT如何学习通用语言表示。原创 2025-06-15 14:09:46 · 920 阅读 · 0 评论 -
Transformer解码器层深度解剖:数学公式 + 动态数据流图
本文深入剖析Transformer解码器的核心机制,通过数学原理、可视化图解和完整代码实现,详细讲解掩码自注意力和编码器-解码器注意力的工作原理及其在序列生成任务中的应用。原创 2025-06-13 13:24:09 · 1031 阅读 · 0 评论 -
手撕Transformer编码器:从位置编码到层归一化的逐行实现
本文深入剖析Transformer编码器的核心组件,通过数学原理、可视化图解和完整代码实现,全面讲解位置编码、层归一化、前馈网络和残差连接的设计思想与实现细节。原创 2025-06-12 13:41:16 · 1025 阅读 · 0 评论 -
万字深度解析注意力机制全景:掌握Transformer核心驱动力
本文深入剖析Transformer的核心创新——Self-Attention机制,通过数学推导、代码实现和可视化,全面讲解Query/Key/Value概念、Scaled Dot-Product Attention原理以及Multi-Head Attention实现细节。原创 2025-06-11 14:23:27 · 1208 阅读 · 0 评论 -
PyTorch终极实战:从自定义层到模型部署全流程拆解
本文深入讲解PyTorch高级开发技巧,涵盖自定义层/损失函数实现、模型保存加载策略以及TensorBoard可视化监控,提供工业级最佳实践和完整代码示例。原创 2025-06-10 14:16:02 · 735 阅读 · 0 评论 -
RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成完整代码实现。原创 2025-06-09 14:14:48 · 1450 阅读 · 0 评论 -
CNN核心机制深度解析:卷积池化原理 & PyTorch实现经典网络
本文系统讲解CNN核心原理、经典网络架构和图像分类实战,涵盖卷积层、池化层、LeNet/AlexNet/VGG/ResNet设计思想,并提供CIFAR-10/MNIST完整实现代码。原创 2025-06-08 14:54:17 · 1466 阅读 · 0 评论 -
从零掌握神经网络:5大核心组件终极指南
本文系统讲解神经网络核心原理,涵盖感知机模型、激活函数、损失函数和反向传播算法,结合数学推导、可视化图解和代码实现,帮你彻底掌握神经网络工作机制。原创 2025-06-06 14:05:30 · 1082 阅读 · 0 评论 -
系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程,并实现线性回归与多层感知机模型。原创 2025-06-05 13:54:16 · 769 阅读 · 0 评论 -
AI大模型应用开发工程师10步搞定:从Anaconda到GPU加速的Python深度学习环境
Python深度学习环境搭建: Anaconda/Miniconda、虚拟环境管理、Jupyter Notebook/Lab使用、GPU驱动安装(CUDA/cuDNN)原创 2025-06-04 14:45:30 · 984 阅读 · 0 评论 -
告别零碎知识!一次搞懂监督/无监督、过拟合、偏差方差、评估指标与交叉验证
掌握监督/无监督学习、过拟合/欠拟合、偏差/方差、评估指标和交叉验证是机器学习入门的核心基础。本文通过理论解析+可视化+代码实战,帮你构建系统认知框架。原创 2025-06-03 14:32:57 · 879 阅读 · 0 评论 -
企业知识库问答系统避坑指南:检索优化与生成一致性解决方案
1. 智能问答系统架构设计 - 数据准备与存储:构建问答数据库,使用Elasticsearch进行高效检索 - 检索模块:关键词检索与语义搜索,结合大模型进行语义匹配 - 生成模块:使用生成模型(如GPT)根据检索结果生成最终答案2. 系统开发与实现 - 数据预处理与索引:清洗数据并使用Elasticsearch构建检索引擎 - 检索与生成集成:从检索到生成的完整流程 - 异常处理:过滤低质量结果,确保答案准确3. 性能优化 - 检索效率:通过缓存和向量数据原创 2025-05-30 15:26:06 · 736 阅读 · 0 评论 -
训练成本直降90%!LoRA微调与GGUF量化的深度碰撞
1.模型微调 / 评测 / 部署2.Fine Tuning /LORA/QLORA /GGUF3.微调的概念与优势4.全量微调/增量微调/局部微调5.PEFT 大模型高效微调理论、指令数据集构造方法6.理解 LoRA 低秩分解 /LoRA 微调实战/多适配器加载与切换7.微调高级进阶8.透彻分析模型训练时显存占用问题9.半精度模型训练与8bit 模型训练实战及优化技巧10.大模型微调与数值下溢、内存溢出等问题解决11.GGUF 模型转换原创 2025-05-29 14:15:18 · 652 阅读 · 0 评论 -
「代码级深度」Transformer完全手册:从ReLU前馈网到Flash Attention的20个关键技术点
1.Transformer 的整体结构2.编码器结构:Self-Attention层 + 前馈神经网络层3.解码器结构:带掩码的 Self-Attention层 + Self-Attention 层 + 一个前馈神经网络原创 2025-05-28 12:58:04 · 554 阅读 · 0 评论