Transformer

Transformer其实就是attention的一个堆叠

从一个宏观的角度,去看transformer到底在干嘛,然后在细分,再做总结

整体框架:

编码器到解码器

序列到序列

分成两部分,

机器翻译流程

给一个输入,给出一个输出,

“我是一个学生”---》》 I  am  a student

编码器在干什么?编码器把输入变成一个词向量(self-attention)

解码器:得到编码器输出的词向量后,生成翻译的结果

Nx的意思是,编码器里面又有N 个小编码器(N=6)

通过六个编码器,对词向量一步又一步的强化(增强)

了解Transformer就是了解Transformer里的小的编码器和小的解码器

FFN(Feed Forward):w2((w1x+b1))+b2

总结:可以用到所有的领域

视频向量,都要通过预训练的方式得到词向量,计算机不认识。

seq(编码器)2seq(解码器)

1,通过编码器对序列进行向量化(词向量)

2,把词向量输入解码器,得到结果(生成单词)

编码器包括两个子层,一个是self-attention,feed Forward

每一个子层的传输过程中都会有一个残差网络+归一化。

Thinking--得到x1(词向量,可以通过one-hot,word2vec得到)+叠加位置编码给x1赋予位置属性,然后得到黄色的x1,-》输入到self-attention子层中, 做注意力机制(x1,x2拼接起来的一句话做),得到z1(x1与x1,x2拼接起来的句子做了自注意力机制的词向量,表征的仍

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值