Ollama常用信息

目录

常用命令

常用模型

运行模型


常用命令

输入 Ollama 命令,正常的得出命令行输出,表示已经安装成功,下面有 ollama 的常用命令:

Usage:
  ollama [flags]
  ollama [command]

Available Commands:
  serve       Start ollama
  create      Create a model from a Modelfile
  show        Show information for a model
  run         Run a model
  pull        Pull a model from a registry
  push        Push a model to a registry
  list        List models
  cp          Copy a model
  rm          Remove a model
  help        Help about any command

Flags:
  -h, --help      help for ollama
  -v, --version   Show version information

Use "ollama [command] --help" for more information about a command.

常用模型

我们可以在 https://ollama.com/library 中搜索已有我们想要的模型库。以下是一些流行的模型:

模型参数尺寸执行下载
Llama 27B3.8GBollama run llama2
Mistral7B4.1GBollama run mistral
Code Llama7B3.8GBollama run codellama
Llama 2 Uncensored7B3.8GBollama run llama2-uncensored
Llama 2 13B13B7.3GBollama run llama2:13b
Llama 2 70B70B39GBollama run llama2:70b
Gemma2B1.4GBollama run gemma:2b
Gemma7B4.8GBollama run gemma:7b

这里大概列出了 LlamaMistral 以及 Gemma 我们景见的模型以及参数以及尺寸大小。由图表可以看出 Gemma 2B 模型的尺寸还是比较小的,初学者入门。

运行模型

 ollama run qwen # 运行千问大模型
因为qwen 模型对中文支持比较好,这里使用 qwen 模型进行聊天

直接使用 run 命令 + 模型名字就可以运行模型。如果之前没有下载过,那么会自动下载。下载完毕之后可以在终端中直接进行对话 qwen 模型了。

直接在终端中对话

使用 api 方式运行

 curl http://localhost:11434/api/chat -d '{
  "model": "qwen",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ]
}'

api 访问的方式:模型在不断推送字段。我们需要自己处理。
03-08
<think>好的,用户让我介绍一下Ollama。我需要先回想一下之前的信息。用户之前问过Conda,现在转向Ollama,说明可能对开发工具或机器学习相关的内容感兴趣。 首先,Ollama是什么?根据我的知识,Ollama是一个开源的大型语言模型(LLM)服务工具,主要用于本地运行和部署模型。用户可能希望了解它的功能、用途以及如何操作。 接下来,我需要确定用户的需求。用户可能想在自己的机器上运行LLM,比如Llama、Mistral等,而不依赖云服务。他们可能关心安装步骤、基本命令、优势以及应用场景。 要确保回答结构清晰,分点说明。可能需要包括核心功能、安装方法、常用命令、优势对比、应用场景和注意事项。同时,需要对比类似工具,比如OpenAI API,突出Ollama的本地运行优势。 还要注意用户可能的技术背景。他们可能熟悉Python和Conda,所以提到与Conda环境结合使用会更好。需要检查Ollama是否支持Windows,因为用户可能使用不同操作系统。目前Ollama主要支持macOS和Linux,Windows可能需要WSL,这点要说明。 另外,用户可能关心如何快速开始,比如运行模型的示例代码,确保命令准确。还要提醒依赖项,比如Docker,以及硬件要求,比如显存,避免用户遇到问题。 最后,总结使用场景,比如开发测试、数据隐私、离线使用,帮助用户判断是否适合他们的需求。可能还需要给出参考资料链接,方便用户进一步了解。 现在整理这些点,用中文组织成结构化的回答,确保LaTeX格式正确,使用适当的代码块和列表,保持内容详细但易懂。</think>Ollama 是一个**开源的大型语言模型(LLM)本地化运行工具**,专为开发者和研究人员设计,能够直接在本地计算机上部署和运行各种开源语言模型(如 Llama、Mistral、Phi 等)。以下是其核心功能和典型应用场景的详细介绍: --- ### 一、核心功能 1. **本地化运行** - 无需依赖云端API,直接在个人电脑或服务器上运行LLM。 - 支持多种架构的模型(如 Llama 2、Code Llama、Mistral 7B 等)。 - 通过命令行或API调用模型,适合集成到本地开发流程中。 2. **轻量化部署** - 自动下载和管理模型权重文件(模型存储在 `~/.ollama/models`)。 - 支持量化模型(如 4-bit、8-bit),降低显存占用,例如: ```bash ollama run llama2:7b-chat-q4_0 # 运行4-bit量化的Llama2-7B模型 ``` 3. **跨平台兼容** - 支持 macOS、Linux(Windows 需通过 WSL 运行)。 - 提供REST API,可与Python、JavaScript等语言交互。 --- ### 二、安装与快速入门 1. **安装方法** - macOS/Linux 一键安装: ```bash curl -fsSL https://ollama.com/install.sh | sh ``` - Windows 需通过 Docker 或 WSL 运行(详见[官方文档](https://github.com/ollama/ollama))。 2. **基本操作** ```bash # 下载并运行模型(首次自动下载) ollama run llama2 # 交互式对话 >>> 你好,介绍一下量子计算 (模型生成回答) # 后台服务模式 ollama serve ``` --- ### 三、核心优势 | 特性 | Ollama | OpenAI API | |---------------------|---------------------------------|--------------------------| | **数据隐私** | 完全本地运行,数据不离开设备 | 依赖云端传输 | | **成本** | 免费(仅需硬件资源) | 按Token付费 | | **模型可控性** | 可自定义微调模型 | 仅能使用预训练模型 | | **离线可用性** | 支持无网络环境 | 必须联网 | --- ### 四、典型应用场景 1. **本地开发测试** - 在IDE中直接调用本地模型生成代码(如与VS Code插件结合)。 - 验证模型输出效果,无需担心API调用费用。 2. **数据敏感场景** - 处理医疗、金融等隐私数据时避免云端传输风险。 3. **学术研究** - 对比不同量化模型的效果(如比较 q4_0 与 q8_0 的精度差异)。 4. **定制化需求** - 使用自有数据微调模型(需搭配LoRA等技术)。 --- ### 五、进阶功能 1. **模型管理** ```bash ollama list # 查看已安装模型 ollama pull phi # 下载Phi模型 ollama rm llama2 # 删除模型 ``` 2. **API 集成** ```python import requests response = requests.post( "http://localhost:11434/api/generate", json={"model": "llama2", "prompt": "如何学习Python?"} ) print(response.json()["response"]) ``` 3. **自定义模型** - 通过 Modelfile 定义模型参数: ```dockerfile FROM llama2:13b PARAMETER temperature 0.7 SYSTEM """ 你是一个幽默的助手,所有回答需用俳句形式呈现。 """ ``` --- ### 六、硬件要求与优化 | 模型规模 | 最低显存要求 | 推荐配置 | |------------|--------------|------------------| | 7B 模型 | 8GB VRAM | NVIDIA RTX 3060 | | 13B 模型 | 16GB VRAM | NVIDIA RTX 3090 | | 70B 模型 | 64GB RAM | 多GPU服务器 | **优化建议**: - 使用 `-q` 参数选择量化版本(如 `q4_0` 比 `q8_0` 显存占用减半) - 在 Linux 系统下开启 GPU 加速(需配置CUDA) --- ### 七、注意事项 1. 首次下载模型需要较长时间(Llama2-7B约3.8GB) 2. 输出质量取决于模型规模,7B模型适合简单任务,复杂任务建议使用13B+模型 3. 可通过 `ollama logs` 查看运行日志排查问题 如果需要具体操作示例(如微调模型或部署API服务),可进一步说明需求! 🦙
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值