GridSearchCV参数的介绍
GridSearchCV参数的介绍
sklearn.model_selection.GridSearchCV(estimator, param_grid, scoring=None, fit_params=None, n_jobs=None, iid=’warn’, refit=True, cv=’warn’, verbose=0, pre_dispatch=‘2*n_jobs’, error_score=’raise-deprecating’, return_train_score=’warn’)**
Parameters:
estimator : estimator object.使用的分类器
param_grid :传入的值为字典或者列表,优化的参数的取值
例如:
param_grid = {'kernel':('linear', 'rbf'),'C': [1e3, 1, 100, 10, 2],
'gamma': [0.0001, 0.0002, 0.00001,0.00005,0.0003], }#不停缩小范围
scoring :
准确度评价标准,默认None,这时需要使用score函数;或者如scoring=‘roc_auc’,根据所选模型不同,评价准则不同。字符串(函数名),或是可调用对象,需要其函数签名形如:scorer(estimator, X, y);如果是None,则使用estimator的误差估计函数。
fit_params : 优化参数dict, optional
cv :交叉验证参数,默认None,使用三折交叉验证。指定fold数量,默认为3,也可以是yield训练/测试数据的生成器。 int, cross-validation generator or a