
python
文章平均质量分 88
乔巴先生24
努力追上曾被寄予厚望的自己
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【Agentic】通过LangGrah实现RAG评分和重写
本文介绍了如何构建一个基于LangGraph的自主检索代理系统。系统通过大语言模型(LLM)自主决策何时使用文档检索功能,实现了智能化的检索增强生成(RAG)。文章详细展示了三个关键步骤:1)使用WebBaseLoader获取并预处理文档,进行分块处理;2)创建语义检索工具,构建向量存储;3)设计代理节点,包括查询生成、文档评分和结果生成等功能模块。该系统能根据用户问题自动判断是否需要检索,并评估检索结果的相关性,实现了智能化的问答流程。通过代码示例展示了从文档加载到检索工具调用的完整实现过程,为构建自主决原创 2025-07-27 16:27:24 · 877 阅读 · 0 评论 -
超详细入门指南,什么是MCP,为什么突然间所有人都在谈论它?
即使是最复杂的模型也受限于其与数据的隔离,特别是当被困在信息孤岛和传统系统之后。所以上下文集成很重要原创 2025-05-11 23:15:06 · 867 阅读 · 0 评论 -
人脸识别最简单但性能最好的喂饭教程
大家知道人脸识别吗,计算机上的视频(本质也是图⽚)是由数字组成的,因此通过数学计算可以进⾏图像识别。⼈脸识别任务是图像识别的⼦类,图像识别可拆分为图像检测和图像对⽐两个任务:检测图像⾥的⼈脸,实际上是分类问题的⼀种,即图像⾥有没有⼈脸,图像对⽐是指检测出的⼈脸和预先采集的⼈脸的相似程度。原创 2025-01-12 23:55:15 · 811 阅读 · 0 评论 -
【Agent的革命之路——LangGraph】人机交互中的细节(等待用户的指令)
这节我们探讨下如何使用interrupt等待用户输入,虽然前面都有讲过,但是有部分同学还是一知半解,我决定把这一块详细的逻辑整理出来,从头到尾给大家讲述一下。人机交互 (HIL) 交互对于agentic系统至关重要。等待人工输入是一种常见的HIL交互模式,允许agentic询问用户澄清问题并在继续之前等待输入。我们可以使用函数在LangGraph中实现这一点。interrupt允许我们停止图形执行以收集用户的输入,并使用收集的输入继续执行。原创 2025-01-12 13:38:11 · 1061 阅读 · 0 评论 -
【Agent】我们怎样与agent交互,纠错agent。
我们从上面的例子可以看出,我们已经实现了怎么给agent纠错,我们用的就是LangGraph中的时间检查点遍历的方式。这为我们做自主软件工程AI应用提供了强大灵活的处理方法。原创 2025-01-05 23:10:39 · 385 阅读 · 0 评论 -
【LangGraph】真正的自定义状态,我们提供建议,agent采纳
如果设置了标志,将导向到该节点。否则,它让预构建函数选择下一个节点。这里回忆一下,tools_condition函数只是检查响应消息中是否chatbot有任何响应。如果是,它将导向到该节点。否则,它将结束graph`。"chatbot",最后,我们添加简单的边并编译图形。这些边指示图形每当a执行完成时 a -> b。try:pass可以看到chatbot。原创 2025-01-04 23:59:39 · 1452 阅读 · 1 评论