【搜索/推荐排序】NCF,Deep&Cross,Deep Crossing,高阶:AutoINt,AFN


在这里插入图片描述

0.交叉特征

在这里插入图片描述

1.NCF

1.1 问题:基于FM的问题

问题

FM->MF来自于矩阵分解的思想,所以也有矩阵分解的问题
在这里插入图片描述
实际上u1和u4更相似,但没有交互不代表不想似,而latent space隐式空间考虑的是交互。
所谓潜在因素就是虽然用户与项目间有交互,但不一定用户就喜欢了,而没交互也不代表不喜欢,这就对隐形学习带来了噪音

动机:神经网络替代点积

直接使用DNN从数据中学习交互函数(以代替MF的内积交互部分),从而突破了由于MF表达时的限制

1.2 NCF模型图

在这里插入图片描述
在这里插入图片描述

  • GMF:通用矩阵分解,线性部分
    y u i ^ = a o u t ( h T ( p u ⊙ q i ) ) \hat{y_{ui}}=a_{out}(h^T(p_u\odot q_i)) yui^=aout(hT(puqi))
    p u p_u pu:用户向量, q i q_i qi:商品向量?item
    点乘,element-wise

  • MLP:非线性部分

  • 最终
    N C F ( x ) = y u i ^ = σ ( h T ( [ p u ⊙ q i , M L P ( p u , q i ) ] ) ) NCF(x)=\hat{y_{ui}}=\sigma(h^T([p_u\odot q_i,MLP(p_u, q_i)])) NCF(x)=yui

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值