文章目录

0.交叉特征
在这里插入图片描述
1.NCF
1.1 问题:基于FM的问题
问题
FM->MF来自于矩阵分解的思想,所以也有矩阵分解的问题
实际上u1和u4更相似,但没有交互不代表不想似,而latent space隐式空间考虑的是交互。
所谓潜在因素就是虽然用户与项目间有交互,但不一定用户就喜欢了,而没交互也不代表不喜欢,这就对隐形学习带来了噪音
动机:神经网络替代点积
直接使用DNN从数据中学习交互函数(以代替MF的内积交互部分),从而突破了由于MF表达时的限制
1.2 NCF模型图
-
GMF:通用矩阵分解,线性部分
y u i ^ = a o u t ( h T ( p u ⊙ q i ) ) \hat{y_{ui}}=a_{out}(h^T(p_u\odot q_i)) yui^=aout(hT(pu⊙qi))
p u p_u pu:用户向量, q i q_i qi:商品向量?item
点乘,element-wise -
MLP:非线性部分
-
最终
N C F ( x ) = y u i ^ = σ ( h T ( [ p u ⊙ q i , M L P ( p u , q i ) ] ) ) NCF(x)=\hat{y_{ui}}=\sigma(h^T([p_u\odot q_i,MLP(p_u, q_i)])) NCF(x)=yui