Word2vec进行中文情感分析

本文详细介绍了如何运用Word2vec模型对中文文本进行情感分析,通过预处理数据、训练模型到评估结果,揭示了Word2vec在情感理解中的应用效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

'''
Chinese sentiment analysis
'''

from sklearn.cross_validation import train_test_split
from gensim.models.word2vec import Word2Vec
import numpy as np
import pandas as pd
import jieba
from sklearn.externals import joblib    #把数据转化为二进制
from sklearn.svm import SVC
import sys

'''
数据预处理:载入数据
           预处理
           切分训练集和测试集
'''
def load_file_and_processing():
    neg = pd.read_excel('H:/word2vect_3data/Chinese_data/neg.xls')
    pos = pd.read_excel('H:/word2vect_3data/Chinese_data/pos.xls')

    cw = lambda x:list(jieba.cut(x))                #jieba分词
    pos['words'] = pos[0].apply(cw)				#此处会报错,读取时给列命名,在apply jieba.cut()不会报错
    neg['words'] = neg[0].apply(cw)

    # use 1 for positive sentiment, 0 for negative
    y = np.concatenate((np.ones(len(pos)),np.zeros(len(neg))))

    x_train,x_test,y_train,y_test = train_test_split(np.concatenate((po
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值