华为OD机试-- 执行时长、GPU算力

代码展示了如何通过遍历任务数组并动态调整任务分配,计算在限制GPU执行能力下完成所有任务的最少时间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

华为OD机试-- 执行时长、GPU算力

问题描述

为了充分发挥GPU算力,需要尽可能多的将任务交给GPU执行,现在有一个任务数组,数组元素表示在这1秒内新增的任务个数且每秒都有新增任务。

假设GPU最多一次执行n个任务,一次执行耗时1秒,在保证GPU不空闲情况下,最少需要多长时间执行完成。

  • 输入描述:

    • 第一个参数为GPU一次最多执行的任务个数,取值范围[1, 10000]
    • 第二个参数为任务数组长度,取值范围[1, 10000]
    • 第三个参数为任务数组,数字范围[1, 10000]
  • 输出描述:

    • 执行完所有任务最少需要多少秒。

示例1

输入
3
5
1 2 3 4 5
输出
6
说明
一次最多执行3个任务,最少耗时6s

示例2

输入
4
5
5 4 1 1 1
输出
5

解决思路

  • 题目中说GPU最多一次执行N个任务,同时也说了任务是有长度的,那就意味着同一时间任务的长度不能大于给定的GPU数量,因此,我们可以对任务数组进行遍历,遍历时记录任务的耗时及剩余GPU的数量,当下一个任务的长度和剩余的GPU数量满足总的时就可以将剩余的GPU归零。

代码实现

public static void main(String[] args) {
    int[] nums = new int[args.length];
    for (int i = 0; i < nums.length; i++) {
        nums[i] = Integer.parseInt(args[i]);
    }
    int gpuNum = nums[0];
    int ans = 0;
    int more = 0;
    for (int i = 2; i < nums.length; i++) {
        int x = nums[i];
        if (x + more > gpuNum) {
            more = more + x - gpuNum;
        } else {
            more = 0;
        }
        ans++;
    }
    while (more > 0) {
        more = more - gpuNum;
        ans++;
    }
    System.out.println(ans);
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值