- 博客(88)
- 收藏
- 关注
原创 CPO产业链、概念股、市场估值以及主要玩家的技术壁垒、卡点和发展方向(秘塔AI搜索快速版回答)
CPO(光电共封装)技术将光模块与芯片集成,助力AI算力提升。
2025-07-21 17:38:44
944
原创 大型语言模型(LLM)在网络安全中最具商业价值的应用场景(Grok3 回答 DeepSearch模式)
大型语言模型(LLM)在网络安全领域展现出巨大商业价值,主要应用包括:1)实时威胁检测与响应,如Qualys TotalAI解决方案;2)自动化漏洞管理,可降低30%误报率;3)高级威胁情报分析,处理10万+token数据;4)钓鱼/恶意软件检测;5)事件响应与取证;6)SOC运营增强;7)合规性管理;8)安全培训模拟;9)红队C2平台;10)URL扫描。
2025-07-17 14:45:21
773
原创 传统三层网络架构和现代数据中心网络架构(如思科 ACI 的 Spine-Leaf 架构)的对比和分析(Grok3 回答)
传统网络采用核心-分布-接入三层架构,适合企业网络但扩展性有限。现代数据中心使用Spine-Leaf两层架构,通过全互联和ECMP提高效率,整合策略管理并支持高带宽需求。Spine-Leaf是传统架构的优化演进,简化层级并引入Overlay网络和集中管理,更适合云计算和大规模数据中心。传统架构仍适用于园区网,而Spine-Leaf成为现代数据中心的主流选择。
2025-07-15 14:33:03
526
原创 思科ACI解决方案中,Tenant、Pod和Node之间的概念区分(Grok3 回答)
思科ACI架构的核心概念包括Tenant(租户)、Pod和Node。Tenant是逻辑隔离单元,用于划分独立网络资源;Pod代表交换机设备的物理/逻辑分组,是网络扩展单元;Node指单个交换机设备(Spine或Leaf)。三者协同工作,Tenant在Pod和Node组成的物理基础设施上运行,Pod包含多个Node,共同构建高扩展性的ACI网络架构,实现资源隔离与自动化管理。
2025-07-15 13:47:30
876
原创 如何使用Cisco DevNet提供的免费ACI学习实验室(Learning Labs)?(Grok3 回答)
Cisco DevNet 的免费 ACI Learning Labs 是学习 APIC 和 ACI 技术的理想工具。通过注册 DevNet 账号、访问 Learning Labs 页面、使用 Always-On 或 Reservation Sandbox,你可以快速体验 APIC 的功能和 Dashboard 内容。建议从基础实验室开始,结合 Sandbox 实践配置和 API 调用,逐步深入自动化和认证准备。如需更详细的实验室推荐或 API 示例,请告诉我,我可以提供进一步指导!
2025-07-14 19:05:59
843
原创 Kubernetes(k8s)中Node, Pod, Namespace和Service之间的关系(Grok3回答)
Kubernetes(k8s)中,Node是运行Pod的物理/虚拟机;Pod是最小的部署单元,属于某个Namespace;Namespace提供资源隔离逻辑分区;Service为一组Pod提供网络访问入口。Node承载Pod,Pod通过标签与Service关联,三者都在Namespace内组织。简单说:Node运行Pod,Namespace管理Pod和Service,Service暴露Pod服务。
2025-06-17 11:16:28
776
原创 使用Claude Desktop快速体验MCP servers!
MCP(Model Context Protocol)是由Anthropic公司推出的开源协议,用于连接LLM与外部数据源和工具。本文提供了将Claude Desktop作为MCP client使用MCP servers的快速实践指南。
2025-06-13 16:14:10
1307
原创 通过POST API调用异步任务,有哪些非POST 回调方式将执行成功的结果通知给请求方?(Grok 3 回答)
最简单的优化是引入 WebSocket/SSE 替代 POST 回调,适合实时性要求高的场景。如果需要高可靠性和扩展性,推荐 Celery + Redis + 消息队列。对于微服务或复杂系统,考虑 gRPC/GraphQL + Kafka + OpenTelemetry。具体选择取决于你的业务规模、实时性需求和技术栈。
2025-06-10 15:26:02
782
原创 一种新兴的网络安全技术:XDR(Extended Detection and Response,扩展检测与响应)(Grok3 DeepSearch模式下回答)
XDR(扩展检测与响应)是一种先进的网络安全技术,通过整合端点、网络、云等多层数据,提供全面的威胁检测和响应能力。
2025-05-20 14:43:38
726
原创 Vision-Language Models (VLMs) 视觉语言模型的技术背景、应用场景和商业前景(Grok3 DeepSearch模式回答)
视觉语言模型(VLMs)是多模态AI系统,结合了计算机视觉和自然语言处理的能力。它们能够基于视觉输入(如图像或视频)生成和理解语言,模拟人类认知方式。根据IBM的文章图像编码器:处理视觉输入,提取空间特征。嵌入投影仪:通过密集神经网络对齐图像和文本的表示,确保两者可共同处理。文本解码器:基于结合的视觉和文本输入生成文本输出。这种结构使VLMs能够生成与视觉内容相关联的语言描述。例如,Hugging Face的博客详细解释了这些组件如何协同工作。
2025-05-06 16:02:51
954
原创 为何在 FastAPI 中需要允许跨域访问(CORS)?(Grok3 回答)
在 FastAPI 中启用 CORS 是前后端分离开发中的必要步骤,因为浏览器的同源策略限制了跨域请求。通过,我们可以灵活地控制哪些来源、方法和头被允许访问后端 API。无论是开发阶段的本地测试,还是生产环境的部署,合理配置 CORS 都能确保前端与后端无缝协作。希望这篇文章和代码示例能帮助你更好地理解 FastAPI 中的跨域问题。如果有更多疑问,欢迎留言讨论!这篇文章以技术博客的风格,结合场景、代码和注意事项,清晰地解释了为何需要 CORS 以及如何实现。
2025-04-09 18:00:36
807
原创 基于 Next.js(前端)和 FastAPI(后端)使用 WebSocket(满血版DeepSeek-R1回答)
满血版DeepSeek-R1回答,如何基于Next.js(前端)和 FastAPI (后端)使用 Websocket建立前后端持久连接。
2025-03-05 17:10:39
1355
原创 Langchain解锁LLM大语言模型的结构化输出能力(多种实现方案)
在本篇博客中,我们将进一步学习了解对模型输出进行结构化控制的其他方案,分别是 少样本示例引导(Few-shot prompting)、结构化方法指定(Specifying the method for structuring outputs)和 直接解析模型输出(Direct prompting and parsing)。
2025-03-03 17:10:36
1282
原创 什么是Agentic AI?(Doubao-1.5-pro-32k 大模型开启联网回答)
火山引擎 Doubao-1.5-pro-32k 大模型开启联网回答提问,“什么是Agentic AI?”
2025-03-02 22:05:54
595
原创 什么是 Agentic AI?(满血版DeepSeek-R1回答)
火山引擎满血版DeepSeek-R1回答提问,“什么是 Agentic AI”
2025-03-02 21:57:58
1211
原创 LangChain解锁LLM大语言模型的结构化输出能力:调用 with_structured_output() 方法
我们需要通过各种方式手段让LLM具备符合我们期望的结构化输出能力,即模型能够按照用户指定的格式或规则生成内容(而不仅仅是自由形式的文本)的能力。这种能力使LLM的输出结果更易于被程序解析、集成到自动化流程中,以一种更为可控的方式满足特定落地场景的需求。
2025-02-26 16:42:08
2360
原创 火山引擎 | 字节旗下云服务平台 | 全速体验DeepSeek-R1满血版!
邀请好友注册和使用,最高双方可获得145元代金券,免费抵扣3625万tokens,畅享R1与V3模型!满血版 deepseek-r1 体验。邀请码:ZTQIL4Q2。
2025-02-25 20:04:19
304
原创 LangGraph 中实现 “时间旅行”:让人机对话具备“撤销”和“重试”能力
LangGraph 的 “时间旅行” 功能允许你通过方法获取对话的历史检查点,并从中选择一个状态来恢复和继续对话。它解决了用户希望回退修复错误或探索不同对话路径的需求。通过这种功能,你可以让chatbot变得更智能、更灵活,为用户提供更好的交互体验。
2025-02-25 12:47:41
1107
原创 PixVerse V4 尝鲜!文生视频&背景音
一只威严的大熊猫身披工艺繁复的中国传统汉服,绣有精致纹样,丝绸广袖随风轻扬,静坐于苍翠空灵的奇幻森林中。熊猫优雅拨动着竹制吉他的琴弦,金色弦光流转,荡开阵阵旋律涟漪,与雀鸟啁啾、枝叶婆娑共鸣交响。柔和的阳光透过雾霭笼罩的树冠,织就迷离光晕。场景将超写实质感与含蓄的水墨画意境交融,营造出自然与乐韵交织的静谧仙境。这是一场ASMR式的声景融合——中国传统庭院声学(庭院声学)与吉卜力工作室式环境叙事的奇妙共鸣,每个视觉元素都携带着独特的声音指纹,随着熊猫乐章的推进编织成动态的声场生态。
2025-02-24 14:46:39
397
原创 当AI开始玩“狼人杀“:联邦学习的魔幻现实主义指南(Deepseek-R1 回答)
输入提示词:你是一个笔风幽默风趣的技术博客的博主,你将就“联邦学习”这个AI话题给大家介绍“联邦学习”的基础概念和适用场景,请确保博客内容与时俱进并且通俗易懂。
2025-02-24 11:52:05
718
原创 基于LangGraph和Ollama实现可调用AI搜索引擎Tavily的Agentic RAG问答机器人
这篇博客将和大家分享如何快速实现一个运行逻辑相较于传统链式RAG(用户询问 -> 检索相关信息作为上下文 -> LLM推理回复)更为智能、适应性更强的Agentic RAG Chatbot。
2025-02-18 15:54:42
1417
原创 基于Ollama和LangChain使用embeddings模型进行文档检索
在LLM基于本地或外部知识库的问答机器人应用开发中,当模型外部知识的索引需要通过语义匹配而非基于正则表达式实现的精确匹配时,我们往往会借助基于深度学习训练得到的embeddings模型对文本进行向量化(当然也可以使用基于词频的算法,如TF-IDF、BM25等),然后通过相似度检索的方式得到与用户提问(user query)相关度最高的外部知识内容。本篇博客将介绍如何通过本地化使用embedding模型,并结合 langchain 该框架中提供的相关类,搭建一个hello world级别的文档检索器。
2025-02-14 15:09:36
2102
原创 传统RAG和Agentic RAG之间的区别及各自适用场景(ChatGPT-4o回答)
传统RAG适合用于需要准确检索和信息丰富生成的任务,而agentic RAG则更适合需要动态交互和复杂任务处理的场景。选择哪种技术应根据具体应用需求和环境来决定。
2025-02-12 16:51:10
230
原创 使用LangChain自定义tools的三种方式
LLM对外部工具的使用现在可谓其必备技能之一。当我们使用LangChain/LangGraph等框架去编排定制一些或简单或复杂的LLM应用时,自定义LLM在处理用户提问时需要用到的工具是一个非常常见的步骤,熟练掌握自定义工具的过程是很有必要的。由此,本篇博客将尽可能详细地介绍如何基于LangChain相关python库中提供的模块组件进行工具的自定义,一起来学习吧!本篇博客内容将参考 LangChain 关于创建自定义工具的官方文档,并结合案例代码运行效果展示和较为详细的文字解释(这部分大概率有 ChatG
2025-02-10 19:43:10
1534
原创 Next.js简介:现代 Web 开发的强大框架(ChatGPT-4o回答)
Next.js 是由 Vercel 开发和维护的开源 React 框架。它旨在帮助开发者轻松构建静态网站和服务器端渲染(SSR)应用。Next.js 的设计初衷是简化复杂的 Web 应用开发流程,使开发者能够专注于编写高质量的代码,而无需过多考虑配置和性能优化。
2025-02-07 23:23:28
502
原创 python中的lambda function(ChatGPT回答)
Python 中的lambda函数是一个匿名函数,它没有名字,通常用于定义简单的、一次性使用的函数。它可以接受任意数量的参数,但只能有一个表达式,并且该表达式的结果就是返回值。lambda参数表达式。
2025-02-06 20:10:50
371
原创 LangGraph中的Human-in-the-loop技术(GPT-4o 回答)
Human-in-the-loop(人类参与)是一种将人类输入整合到自动化流程中的技术。在这一过程中,人类在关键阶段对机器生成的结果进行决策、验证或修改,从而确保最终输出的准确性和可靠性。这种方法特别适用于那些对错误容忍度极低的场景,如合规、决策制定和内容生成等。
2025-02-05 14:34:03
990
原创 LangGraph 通过in-memory持久化实现多轮对话能力Chatbot
在已有chatbot的基础上,让我们再进一步让对话机器人具备对历史交互上下文的记忆能力,以打造一个可以与用户进行连贯(多轮)对话能力的chatbot。
2025-01-23 14:42:32
1688
原创 LangSmith 简单使用说明(结合上篇博客食用更佳)
上篇博客详细给大家介绍了如何,其中关于LangSmith的部分没有怎么展开,这篇文章就简单介绍一下LangSmith的基本使用作为补充。在我们运行代码时,比如问,可以在终端看到三次来自Assistant的输出内容。因为代码的处理是将每一次graph更新的消息列表信息打印出来,所以不管是从Assistant的数量还是从基于下方图的逻辑推荐都可以知晓这次graph的迭代一共有三次的状态更新。
2025-01-22 19:43:02
765
原创 基于LangGraph、Groq和Tavily打造可以调用外部搜索引擎工具的对话机器人(核心代码 & 万字详解)
首先,创建一个继承自TypedDict类的子类State,且State类定义了一个messages键,用于定义描述graph状态的数据结构。messages键的类型被指定为list,意味着该键的值是一个列表,用于存储Graph状态变化时产生的消息。Annotated则是用来为messages类型(列表)添加额外的元数据,以此控制messages键的列表值的更新方式为追加而不是默认的覆盖。
2025-01-22 17:12:49
1815
原创 Cursor 运行python项目如何选用已有的conda环境
便可看到所有已创建的conda环境列表,根据项目运行所需的环境进行选择即可。(Windows);这个时候会弹出一个检索框,输入。打开 cursor,按下快捷键。
2025-01-18 22:39:37
1944
1
原创 Single-agent和Multi-agent的区别及各自适用的落地场景(ChatGPT-4o,智谱清言 GLM 4 Plus 回答)
基于LLM的Single-Agent是指利用LLM作为核心组件,独立完成特定任务的智能体。这种智能体不依赖于其他智能体的协作或竞争。基于LLM的Multi-Agent是指多个智能体共同工作,通过通信、协作或竞争来完成复杂任务的系统。每个智能体可能基于相同的或不同的LLM。基于LLM的Single-Agent和Multi-Agent各有其独特的优势和适用场景。Single-Agent适用于简单、独立的任务,而Multi-Agent适用于复杂、需要多智能体协作的任务。
2025-01-14 18:04:34
1429
原创 基于 Groq 和 CrewAI 搭建一个响应快速的智能体
大家可以基于上述 groqcloud 在官方教程中提供的代码为基础,创建用于解决某特定业务场景的其他角色(产品经理、软件开发工程师等)来搭建智能体回答 or 解决复杂场景问题的流程。
2025-01-14 14:32:39
512
原创 如何让 LLM 使用外部函数 or 工具?Llama-3-Groq-8B-Tool-Use 模型使用详解
定义两个非常基础的有关于数学运算的函数(这里我让 ChatGPT 生成了),一个是两个数的加法函数,另一个是计算数字阶乘的函数,都是数学里面比较基础的运算。# 加法函数:计算两个数的和# 阶乘函数:计算给定数字的阶乘return 1else:result = 1类似于 OpenAI 在 llm进行函数调用时定义的规范,我们按照Groq 在 huggingface model card中的prompt示例中对tool的json描述将定义好的两个python函数进行同样规范下的描述。
2025-01-13 17:40:51
1578
原创 使用supervisor对python脚本进行管理的步骤及好处(ChatGPT回答)
总的来说,使用 Supervisor 管理 Python 脚本的好处在于提高了可靠性、可维护性和自动化水平,特别适用于需要长期运行且容易出错的任务。这样,您就可以使用 Supervisor 管理 Python 脚本的启动、停止、重启等操作了。目录下为您的 Python 脚本创建一个配置文件,例如。例如,如果您的 Python 脚本路径是。如果您的系统中没有安装。
2025-01-10 16:23:06
1054
原创 来自28亿美元估值的超级独角兽Groq的AI芯片,让LLM推理快到飞起
成立于2016年,以快著称的美国人工智能芯片独角兽Groq,2024年8月5日官宣融资6.4亿美元(截止到当前最新一轮融资)。Groq的语言处理单元(LPU, Language Processing Unit)专为AI推理和语言处理而设计,是应时而生、实现AI超快推理的核心技术。
2025-01-10 00:00:04
641
原创 Agent | Dify中的两种可选模式
参考Dify 为智能助手提供了两种推理模式: Function calling(函数调用)和 ReAct。
2025-01-08 20:44:06
4503
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人