- 博客(399)
- 资源 (1)
- 收藏
- 关注

原创 DNA 13. SCI 文章肿瘤突变负荷计算方法(TMB)
基因组生信分析教程DNA 1. Germline Mutation Vs. Somatic Mutation 傻傻分不清楚DNA 2. SCI 文章中基因组变异分析神器之 maftoolsDNA 3. SCI 文章中基因组变异分析神器之 maftoolsDNA 4. SCI 文章中基因组的突变信号(maftools)DNA 5. 基因组变异文件VCF格式详解DNA 6. 基因组变异之绘制精美瀑布图...
2023-03-06 11:37:36
2486

原创 FigDraw 11. SCI 文章绘图之小提琴图 (ViolinPlot)
FigDraw 11. SCI 文章绘图之小提琴图 (ViolinPlot)样式最全面的小提琴图 (ViolinPlot),全网仅桓峰基因提供此教程!
2022-06-04 06:39:14
15988
1
原创 IF 48.5+ 单细胞转录组分析揭示小细胞肺癌的肿瘤异质性
研究结果表明,人类小细胞肺癌存在显著的异质性,且在单细胞分辨率下癌细胞与肿瘤微环境之间存在密切的相互作用,从而为更好地理解SCLC的生物学特性以及开发新的SCLC治疗方法奠定了基础。c、d 饼状图展示了来自CCLE中的50个小细胞肺癌细胞系以及乔治等人所描述的81个小细胞肺癌肿瘤样本中不同免疫特征的比例。b 对SCLC-P2中恶性细胞的UMAP图显示了由细胞起源划分的原发性和复发性肿瘤中的特定簇。a 对来自九名小细胞肺癌患者中的恶性细胞进行的UMAP图分析揭示了肿瘤特异性的簇。
2025-08-04 11:13:39
684
原创 肺腺癌上皮细胞状态及可塑性图谱
与远离LUAD的正常组织相比,靠近LUAD的正常组织中调节性T细胞表型增加,而细胞毒性CD8+T细胞、抗原呈递巨噬细胞和炎症树突状细胞的特征和比例则减少。C-F、代表性的环形图展示了患者2、3、4和5的每个LUAD与所选匹配的空间正常肺样本之间免疫检查点介导的L-R对的详细情况。B、使用皮尔逊相关系数绘制的散点图,展示了NL、AAH和LUAD样本中CD24与EPCAM和PRF1的表达水平之间的关系。B、热图展示了预测的基于配体-受体的相互作用在各个LUAD与与其对应的空间分布的正常肺组织之间的重叠情况。
2025-08-01 11:50:38
961
原创 48分肺腺癌上皮细胞状态及可塑性图谱
与远离LUAD的正常组织相比,靠近LUAD的正常组织中调节性T细胞表型增加,而细胞毒性CD8+T细胞、抗原呈递巨噬细胞和炎症树突状细胞的特征和比例则减少。C-F、代表性的环形图展示了患者2、3、4和5的每个LUAD与所选匹配的空间正常肺样本之间免疫检查点介导的L-R对的详细情况。B、使用皮尔逊相关系数绘制的散点图,展示了NL、AAH和LUAD样本中CD24与EPCAM和PRF1的表达水平之间的关系。B、热图展示了预测的基于配体-受体的相互作用在各个LUAD与与其对应的空间分布的正常肺组织之间的重叠情况。
2025-08-01 11:50:38
352
原创 单细胞图谱揭示了抗PD-1治疗的非小细胞肺癌中的免疫异质性
T细胞克隆扩增分析揭示了非MPR患者的异质性,表现为与T细胞耗竭相关的细胞和CCR8+调节性T细胞的扩增程度不同。我们的研究剖析了NSCLC患者对化疗免疫治疗的TIME异质性,为NSCLC的管理提供了新的见解。(B)使用NMF包计算从排名2到排名10的共轭相关系数,并结合NMF聚类的共识图,不同排名下的共识热图显示了每个患者连接矩阵的平均值,代表相似性度量,以及每个患者的平均连接情况。(I)条形图展示了与Tex相关的细胞和与Tex扩展的终末型细胞亚型相对应的突变相关新抗原特异性及病毒特异性T细胞的比例。
2025-07-31 12:48:13
914
原创 42分单细胞图谱揭示了抗PD-1治疗的非小细胞肺癌中的免疫异质性
抗PD-(L)1治疗已成为非小细胞肺癌的标准疗法,但患者对相同治疗方案的反应存在差异。肿瘤免疫微环境与免疫治疗反应相关,但其异质性导致的治疗结果差异尚未得到充分研究。我们应用单细胞RNA和TCR测序技术,对234名接受新辅助化疗免疫治疗后的NSCLC患者的手术肿瘤样本进行了分析。分析结果显示存在五种不同的TIME亚型,其主要病理反应率各不相同。MPR患者体内FGFBP2+NK/NK样T细胞、记忆B细胞或效应T细胞水平升高,而非MPR患者体内CCR8+调节性T细胞水平较高。T细胞克隆扩增分析揭示了非MPR患者
2025-07-31 12:48:13
583
原创 单细胞RNA测序揭示了肺腺癌中不同的肿瘤微环境模式
我们的分析揭示了异质性的癌细胞转录组,反映了组织学分级和致癌通路的活性,以及两种截然不同的微环境模式。相比之下,惰性的N³MC微环境则以正常样肌成纤维细胞、非炎性单核细胞衍生巨噬细胞、自然杀伤细胞、髓样树突状细胞和常规 T细胞为特征,与良好的预后相关。F 组织学亚型的分布,(G)正常上皮细胞类型基因签名的平均模块得分,以及(H)按主成分1(PC1)排序的肿瘤上皮细胞的平均通路活性得分。E 基于选定的微环境细胞簇和肿瘤细胞特征的标记基因的ssGSEA富集分数的相关性。
2025-07-30 12:57:12
826
原创 7+ 单细胞RNA测序揭示了肺腺癌中不同的肿瘤微环境模式
我们的分析揭示了异质性的癌细胞转录组,反映了组织学分级和致癌通路的活性,以及两种截然不同的微环境模式。相比之下,惰性的N³MC微环境则以正常样肌成纤维细胞、非炎性单核细胞衍生巨噬细胞、自然杀伤细胞、髓样树突状细胞和常规 T细胞为特征,与良好的预后相关。F 组织学亚型的分布,(G)正常上皮细胞类型基因签名的平均模块得分,以及(H)按主成分1(PC1)排序的肿瘤上皮细胞的平均通路活性得分。E 基于选定的微环境细胞簇和肿瘤细胞特征的标记基因的ssGSEA富集分数的相关性。
2025-07-30 12:57:12
388
原创 单细胞 RNA 测序揭示了人类肺癌的治疗诱导进化
在底部左象限中显示了仅在病理损伤中独有的特征,包括纤溶酶原激活途径的上调(5)、间隙连接蛋白的表达(6)、肿瘤抑制基因的丢失(7)、促炎症趋化因子的表达(8)、Treg细胞群体的增加(9)以及色氨酸代谢特征的增加表达(10)。(B和C)通过scRNA-seq确定的每个患者样本中的癌细胞突变图谱,分别以二值化热图的形式展示在驱动基因(B)和COMSIC一级基因(C)上。(E和F)TN、RD和PD肿瘤组织切片中SUSD2(E)和CTNNB1(F)的代表性免疫组化图像,展示了在RD时间点的表达增加。
2025-07-29 16:14:46
829
原创 42分单细胞 RNA 测序揭示了人类肺癌的治疗诱导进化
在底部左象限中显示了仅在病理损伤中独有的特征,包括纤溶酶原激活途径的上调(5)、间隙连接蛋白的表达(6)、肿瘤抑制基因的丢失(7)、促炎症趋化因子的表达(8)、Treg细胞群体的增加(9)以及色氨酸代谢特征的增加表达(10)。(B和C)通过scRNA-seq确定的每个患者样本中的癌细胞突变图谱,分别以二值化热图的形式展示在驱动基因(B)和COMSIC一级基因(C)上。(E和F)TN、RD和PD肿瘤组织切片中SUSD2(E)和CTNNB1(F)的代表性免疫组化图像,展示了在RD时间点的表达增加。
2025-07-29 16:14:46
463
原创 多组学分析揭示了非小细胞肺癌对免疫化疗耐药的相关因素
c. 在 P11分离肿瘤切片的图像中,肿瘤斑点、SPP1+巨噬细胞和CXCL9+巨噬细胞的空间分布,COL11A1+成纤维细胞特异性表达的CD44、SPP1和CXCL9的表达以及SPP1与CD44以及CXCL9与CXCR3的共定位水平。b. 展示了肿瘤斑点、COL11A1+型成纤维细胞和ADH1B+型成纤维细胞的空间分布情况,以及DDR1、COL11A1和ADH1B的表达水平、DDR1-COL11A1的共定位水平以及孤立肿瘤样本 P11 中的胶原形成特征得分。α-SMA+及其邻近肿瘤;
2025-07-28 15:44:08
819
原创 29分多组学分析揭示了非小细胞肺癌对免疫化疗耐药的相关因素
c. 在 P11分离肿瘤切片的图像中,肿瘤斑点、SPP1+巨噬细胞和CXCL9+巨噬细胞的空间分布,COL11A1+成纤维细胞特异性表达的CD44、SPP1和CXCL9的表达以及SPP1与CD44以及CXCL9与CXCR3的共定位水平。b. 展示了肿瘤斑点、COL11A1+型成纤维细胞和ADH1B+型成纤维细胞的空间分布情况,以及DDR1、COL11A1和ADH1B的表达水平、DDR1-COL11A1的共定位水平以及孤立肿瘤样本 P11 中的胶原形成特征得分。α-SMA+及其邻近肿瘤;
2025-07-28 15:44:08
416
原创 IF 33+ 单细胞和空间转录组学分析揭示了NSCLC新辅助化疗免疫治疗后的肿瘤微环境重塑
我们的数据表明,CD4+Treg T细胞和mCAFs的分布表明存在免疫抑制性肿瘤微环境,而CD4+Th17 T细胞和iCAFs的积累可能是对化疗免疫治疗敏感性的积极标志。并且在每个非小细胞肺癌切片中都存在肿瘤细胞、NK 细胞、T 细胞以及癌相关成纤维细胞。I、J 通过RCTD算法在非小细胞肺癌切片中标注了肿瘤细胞、正常上皮细胞和其他细胞类型的空间定位,并显示了每种细胞类型的百分比。I 通过RCTD算法推断出的巨噬细胞亚型、肿瘤细胞、NK细胞、T细胞和CAF在4个非小细胞肺癌肿瘤切片中的空间注释。
2025-07-26 08:00:21
1053
原创 RNA 51.轻松搞定TCGA/GTEx基因表达谱交互分析(GEPIA)
基因表达谱交互分析(GEPIA)是一个新开发的交互式网络服务器,用于分析来自TCGA和GTEx项目的9736个肿瘤样本和8587个正常样本的RNA测序表达数据,使用标准处理流程。GEPIA提供可定制的功能,如肿瘤与正常样本差异表达分析、根据癌症类型或病理阶段进行特征谱分析、患者生存分析、相似基因检测、相关性分析和降维分析。GEPIA2提供可定制的功能,如肿瘤与正常差异表达分析、根据癌症类型或病理阶段进行特征谱分析、患者生存分析、相似基因检测、相关性分析和降维分析。同时可视化两种细胞类型的比例。
2025-07-25 13:45:36
759
原创 IF 16+ 非小细胞肺癌的单细胞和空间转录组学分析
F Violin图显示了在公开的“MoMac VERSE”数据集中鉴定的髓系细胞和祖细胞群体中AMɸ基因特征的表达水平。B Violin图显示了在公开的人类胎儿肺图谱中鉴定的髓系细胞和祖细胞群体中STAB1基因特征的表达水平。G Violin图显示了在公开的人类胎儿肺图谱中鉴定的髓系细胞和祖细胞群体中AMɸ基因特征的表达水平。B 热图显示了LUAD和LUSC中广泛的细胞注释总结的所有细胞类型之间的LR相互作用数量。B 根据肿瘤和背景切片中细胞2位置的细胞丰度估计计算的免疫和非免疫细胞类型的相对比例。
2025-07-24 15:12:29
958
原创 IF 9+ 人类多原发性肺癌细胞组成和空间结构的多向特征
值得注意的是,我们识别出一种以前未描述的上皮细胞亚群,称为CLDN2+肺泡II型(AT2)细胞,该亚群在MPLC中特异性富集。此外,MPLC的T细胞中高度表达了细胞表面受体-TNFRSF18/GITR,提示TNFRSF18可能是MPLC中的一个潜在免疫治疗靶点。h 肿瘤组织和正常组织来源的CLDN2+AT2细胞中CLDN2相关细胞衰老标记基因差异表达的核弦图。h 来自MPLC患者和GSE131907的细胞中CLDN2差异表达的箱线图。c 不同主导细胞类型的肿瘤组织和同一患者正常组织中一致评分差异的箱线图。
2025-07-22 15:08:49
793
原创 IF 16+ 单细胞分析识别NOTCH3介导间质细胞互作促进了肺腺癌微环境重塑和侵袭
最近的转录组学研究旨在理解免疫疗法反应的决定因素,发现了由基质介导的抗性机制。为了更好地了解LUAD中基质生物学在细胞和分子水平上的情况,我们对来自9名未接受治疗的患者的256,379个细胞进行了单细胞RNA测序,其中包括13,857个间质细胞。间质细胞和EC之间的配体和受体互作模型表明,NOTCH信号驱动这些细胞间的相互作用,在肿瘤中,周细胞和CAF是信号接收者,而动脉和PLVAP高表达的不成熟新生血管EC是信号发送者。D,热图中显示的7个LUAD样本的细胞表型是通过染色抗体的归一化中值缩影表达确定的。
2025-07-21 15:07:01
931
原创 IF 14+ 单细胞分析晚期非小细胞肺癌的肿瘤异质性和微环境
癌症细胞和肿瘤微环境中的细胞共同决定疾病进展,以及对治疗的反应或逃避治疗。为了绘制晚期非小细胞肺癌(NSCLC)中癌症细胞的细胞类型特异性转录组景观及其肿瘤微环境,我们通过单细胞RNA测序分析了来自III/IV期NSCLC患者的42份组织活检样本,并呈现了晚期NSCLC的大规模单细胞分辨率图谱。除了先前肺癌早期单细胞研究中描述的细胞类型外,我们还能够识别肿瘤中罕见的细胞类型,如毛囊树突状细胞和T辅助17细胞。a 6种T细胞亚型和2种NK细胞亚型的UMAP可视化和通过singleR预测的T细胞亚群。
2025-07-21 09:45:56
820
原创 IF 50+ 肺癌转移中的再生谱系和免疫介导的修剪
在这里,我们表明,人类原发性肺腺癌的特征是再生细胞类型的出现,这通常是对肺损伤的反应,以及指定大多数肺泡和支气管上皮谱系的转录因子之间的显著不忠。f,在患者原发性肿瘤和转移瘤中,指定干细胞和肺上皮祖细胞、自身MHC I类标志物和NK激活配体的转录因子在I-Q、II或III型发育阶段的患者来源肿瘤细胞中的表达。g,通过RT-PCR测量的H2087-LCC细胞在有和没有SOX2或SOX9诱导的情况下对NK细胞逃逸重要的MHC I类基因的相对表达。
2025-07-17 15:35:33
733
原创 IF 50+ 肺肿瘤微环境中基质细胞的表型塑造
通过评估这些细胞亚型的标记基因在1,572名患者的大规模RNA测序数据中的相关性,展示了这些标记基因如何与生存率相关,而免疫组织化学验证了这些标记物作为独立细胞实体在一组独立的肺肿瘤中的存在。d,对于52个基质细胞亚簇和12个癌症细胞亚簇中的每一个:来源于4个非恶性和15个肿瘤样本的细胞比例,来源于5个患者中每一个患者的细胞比例、细胞数量和转录物数量的盒图。b,这里分析的52698个细胞的tSNE,其样本来源类型(肿瘤或非恶性肺)、相应的患者、相关细胞类型和在该细胞中检测到的转录物(UMI)数量。
2025-07-15 15:22:18
298
原创 SCS 48.单细胞空间转录组数据分析软件
Visium数据支持最广,Slide-seq/MERFISH需专门工具(如。细胞定位:Cell2location + SPOTlight。:Cell2location、Seurat需GPU/高内存。:基于深度学习的空间转录组整合工具 GitHub。整合scRNA-seq与空间数据、聚类、可视化。Python版分析流程(类似Seurat)基础分析:Seurat/Scanpy。高精度细胞类型定位(贝叶斯模型)配体-受体共定位分析(内置模块)检测空间可变基因(统计模型)跨平台空间数据整合(NMF)
2025-07-07 15:50:28
341
原创 RNA 50.轻松搞定TCGA-LUAD基因筛选
1.下载TCGA-LUAD表达数据。1. 准备Lasso回归数据。lambda.1se 更严格。2.预处理:过滤低表达基因。Lasso回归筛选关键基因。3.创建交叉验证的生存对象。5.选择最优lambda值。1.创建DESeq2对象。6.可视化Lasso路径。2. 提取基因表达矩阵。3. 获取样本分组信息。4.可视化交叉验证结果。6.筛选显著差异基因。7.保存差异基因结果。7.提取非零系数基因。
2025-06-30 08:55:48
274
原创 国自然解析细胞器官交互网络(CrossTalk)
特定细胞类型(如免疫细胞、基质细胞、神经细胞、上皮细胞、内皮细胞)间的交互在组织稳态和疾病中的作用(如肿瘤微环境、神经免疫、代谢器官间对话);清晰地阐述所研究的交互在特定重大疾病(如肿瘤、心脑血管疾病、代谢性疾病、神经精神疾病、感染免疫性疾病)或关键生理过程(如发育、衰老、再生、应激适应)中的核心作用和潜在应用价值。远程器官对疾病原发灶的影响(如恶病质)。细胞因子、趋化因子、生长因子、神经递质、激素、代谢物(如乳酸、酮体、脂质介质)、细胞外囊泡(外泌体、微囊泡)携带的核酸、蛋白质、脂质。
2025-06-23 12:05:30
705
原创 SCS 47.SPATA2解析单细胞空转数据(Xenium)
函数normalizeCounts()可以多次调用,每次使用不同的方法输入,这会填充相应实验中的处理矩阵列表。结果存储在相应的实验中。我们提出了空间梯度筛选算法,该算法可以在没有预先数据分组的情况下,促进与组织学相关的基因表达模式的监督检测。该算法嵌入在SPATA2中,这是一个用R编写的开源框架,提供了一套全面的工具,用于研究组织内的基因表达。此外,我们还计算了细胞的元数据:n_counts_{模态}表示每个细胞中的单个转录本计数,而n_distinct_{模态}表示每个细胞识别出的不同基因数量。
2025-06-20 13:23:45
1015
原创 IF 9+ 3种机器学习搞定糖鞘脂生物合成核心调控因子在胸腺瘤恶性进展中的作用
为了确定胸腺恶性肿瘤发展的主要贡献者,我们利用基因集富集分析(GSEA)、基因集变异分析(GSVA)和KEGG途径富集分析。此外,我们将转录组学研究结果与光谱代谢组学研究结合起来,通过LC-MS/MS检测,以建立胸腺瘤进展过程中代谢重编程的基本控制网络。胸腺瘤的预后与糖鞘脂生物合成-乳酸和新乳酸系列途径有关,B3GNT5高表明生存期差。糖鞘脂生物合成核心调控因子(尤以UGCG为关键)通过代谢重编程和免疫微环境重塑双重机制驱动胸腺瘤恶性进展,靶向该通路可显著改善患者预后,为胸腺瘤精准治疗提供新范式。
2025-06-16 15:48:16
870
原创 ML 50.一个函数搞定多个生存模型(autoSurv)
对PBC数据拟合生存模型,这里机器学习生存模型可选多种,参数trainModels=c("cox", "rsf", "glm", "gbm", "glmnet", "svm", "cforest", "nnet")设定即可。对数据进行处理,包括缺失,status,time等。选其中一个人pbc.dat[4,] 绘制预测图。
2025-06-13 15:03:38
442
原创 ML 49.机器学习多变量预测危险比曲线(smoothHR)
为了在Cox模型中引入灵活性,可以应用几种平滑方法,在这种情况下,基于样条的方法是最常考虑的。为了更好地理解每个连续协变量对结果的影响,结果可以用基于样条的风险比(HR)曲线表示,以特定的协变量值为参考。尽管在生存分析中使用样条平滑方法具有潜在的优势,但目前在R软件中没有分析方法来选择多变量Cox模型(具有两个或多个非线性协变量效应)的最佳自由度。此外,该软件包还提供了在多变量Cox模型中自动选择自由度的功能。为了更好地理解每个连续协变量对结果的影响,结果以危险比曲线的形式表示,以特定协变量值为参考。
2025-06-11 16:07:30
925
原创 SCS 46.Seurat v5解析单细胞空转数据(Xenium)
在Seurat v5中,引入了对空间数据进行‘生态位’分析的支持,这将组织区域(‘生态位’)划分为由不同相邻细胞类型组成的区域。FindTransferAnchors 可用于整合空间转录组数据集中的点级别数据,而 Seurat v5 还包括对鲁棒细胞类型分解(RCTD)的支持,这是一种计算方法,用于从空间数据集中解卷积点级别数据,当提供单细胞 RNA 测序参考时。结果的Seurat对象将包含每个细胞的基因表达谱、每个细胞的质心和边界以及每个检测到的个体转录本的位置。利用每个细胞的位置信息,计算空间生态位。
2025-05-30 15:28:13
1013
原创 百度网盘的数据上传或下载到服务器小技巧
这样就在百度网盘上新建一个目录:/apps/bypy(我的应用数据/bypy) bypy upload [localpath] [remotepath] [ondup] 或 bypy syncup [localdir] [remotedir] [deleteremote] 上传文件到百度网盘 (上传文件会检查文件校验,如果文件是百度已经收录过的,那么就可以做到秒传)再上传一个,会发现嵌套目录了,将数据放到嵌套目录下 /apps/bypy/我的应用数据/bypy/cell_feature_matrix/
2025-05-29 13:53:06
1252
原创 SCS 45.单细胞空转 Imaging-based,Sequencing-based,Visium HD 区别
成像数据可能输出坐标和图像,需要专门的图像处理工具,而测序数据输出的是基因表达矩阵和坐标,可以用常规的单细胞分析工具处理。比如,需要高分辨率但基因数量少的选择成像,需要全转录组但分辨率低的选择测序,而。首先,我需要明确三种技术的核心差异:成像和测序的基本原理不同,导致数据分辨率、基因覆盖、样本处理等方面的差异。同时,要避免使用过于专业的术语,保持解释的清晰易懂,确保用户能够理解不同技术之间的核心差异和应用场景。的区别,比如分辨率提升到细胞级别,但依然基于测序,兼容性如何,样本处理是否有特殊要求等。
2025-05-21 15:09:07
661
原创 ML 48.机器学习之临床生存树(rpartSurv)
机器学习中生存树(Survival Tree)的原理详解 生存树是结合决策树与生存分析的机器学习模型,主要用于处理带有时间-事件数据(包含删失数据)的预测问题。示例: 在每个候选分裂点,计算左右子节点的Kaplan-Meier曲线,通过对数秩检验的p值评估差异显著性,选择p值最小的分裂点。预测输出 风险评分(Risk Score):每个叶节点的样本具有相似的风险水平,可通过中位生存时间或累积风险函数描述。对数秩检验(Log-Rank Test):比较左右子节点生存曲线的差异,选择统计量最大的分裂点。
2025-05-20 15:04:31
863
原创 SCS 44.单细胞的配体和受体相互作用(Celltalker)
celltalker的目标是从单细胞RNAseq数据中推断出假设的配体和受体相互作用。这是通过评估已知的同源配体/受体在细胞群中的相互作用来完成的。通过共同加权配体和受体的表达水平来对相互作用进行评分,并通过比较混乱的配体和受体的背景分布来评估意义。SeuratData人类骨髓细胞。确定统计上最显著的相互作用。运行celltalker。
2025-05-08 14:15:46
294
原创 Clone 13.肿瘤重建转移瘤系统发育的计算工具(Treeomics)
最小AD(等位基因深度)必须在FORMAT列中提供,然后在每个样品的相应列中提供实际观察到的参考和备用等位基因的数量)。生成的输出可以在‘output/example_output ’中找到,相应的Treeomics报告位于 [output/example_output/example_6_e=0_01_c0=0_5_af=0_05_report.pdf](output/example_output/example_6_e=0_01_c0=0_5_af=0_05_report.pdf)。
2025-05-06 16:32:33
977
原创 Clone 12.肿瘤克隆进化的单细胞分辨率(Uphyloplot2)
生成标准的bed文件格式,注意其实位点是0,所以这个文件需要Start减1,利用bedtools window 合并两个文件,保留文件里面的所有注释信息,这个后面我们需要利用注释信息找到每个tree的CNV突变区域。输入文件包括四个:counts_matrix,annotations_file,gene_order_file,ref_group_names。可以看到结果文件有三列,第一列表示树的结构,第二列表示权重值,第三列表示节点,那么我们想知道每个树枝里面有哪些突变,这个问题该怎么解决?
2025-04-22 11:02:39
1086
原创 Clone 11.肿瘤克隆关系分析与鸽巢原理应用
*亚克隆(Subclone)**:在原始克隆基础上获得新突变的子群体。假设:如果N个区域中观察到的克隆总数超过M个基础克隆,则必须存在亚克隆。**克隆(Clone)**:具有相同基因突变的癌细胞群体。推论:当总观测克隆数 > 基础克隆数时,必存在亚克隆。聚类分析函数(识别每个区域的潜在克隆)基于鸽巢原理推断克隆-亚克隆关系。:不同肿瘤区域包含不同克隆组成。移动平均滤波 + 异常值检测。运行sciclone检测聚类。物体 = 观测到的克隆特征。肿瘤克隆分析的核心方法论。区分真实亚克隆与测序误差。
2025-04-10 16:04:24
445
原创 Omics 3.多组学单细胞分析识别了调控产后大脑的关键调节因子赠送代码
为了提高我们对出生后大脑发育的理解,我们同时分析了来自10个供体的4个大脑区域的101924个单核的基因表达和染色质可及性,涵盖了从婴儿期到成年后期的5个关键出生阶段。利用该数据集和染色体构象捕获数据,我们构建了基于增强子的基因调控网络,以鉴定大脑发育的细胞类型特异性调控因子,并解释十种主要大脑疾病的全基因组关联研究位点。我们的分析将2318个细胞特异性位点与1149个独特基因联系起来,代表了与所研究性状相关的41%的位点,并突出了55个影响几种疾病表型的基因。
2025-04-07 14:17:57
381
原创 Omics 2.多组学相互作用Sankey复现赠送代码
微生物网络分析显示ASD的重新布线和稳定性降低。宿主蛋白质组学分析显示,参与神经炎症和免疫调节的蛋白发生了改变,包括钾化因子(KLK1)和转甲状腺素(TTR)。:多组学数据的整合提供了关键证据,表明肠道微生物群的改变和相关大分子的产生可能在ASD相关症状和合并症中发挥作用。:本研究利用多组学方法,通过检测微生物多样性、细菌元蛋白、相关代谢途径和宿主蛋白质组,揭示肠道微生物群与ASD之间的联系机制。:肠道微生物群的改变与自闭症谱系障碍(ASD)有关,但将这些变化与ASD病理生理联系起来的机制尚不清楚。
2025-03-31 14:37:21
935
原创 IF 11+多组学分析揭示自闭症谱系障碍的独特微生物大分子相互作用赠送代码
多组学数据的整合提供了关键证据,表明肠道微生物群的改变和相关大分子的产生可能在ASD相关症状和合并症中发挥作用。本研究通过整合多组学数据,揭示了ASD中肠道微生物通过代谢物和蛋白质与宿主神经/免疫系统的独特互作模式,为理解ASD病理机制和开发新型诊疗工具提供了重要依据。综合多组学整合:基因组学、宏蛋白质组学和代谢组学的整合提供了肠道微生物群的综合组合,揭示了与ASD相关的潜在大分子产生。:肠道微生物群的改变与自闭症谱系障碍(ASD)有关,但将这些变化与ASD病理生理联系起来的机制尚不清楚。
2025-03-28 19:23:50
818
原创 Omics 1.多组学分析工具(mixOmics)
多变量方法非常适合具有许多变量(例如,基因,蛋白质)和少量样本(例如,患者,细胞)的大型组学数据集。这些组件可用于产生清晰的可视化,揭示与生物学结果相关的关键变量,并集成多组学数据集。mixOmics是一个R包,用于探索和整合组学数据,包括转录组学,蛋白质组学,脂质组学,微生物组学,宏基因组学等。mixOmics软件包包括用于数据集成、生物标志物发现和数据可视化的工具,使用先进的多变量方法来降低数据维度并揭示数据集内部和数据集之间的关系。整合多组学数据构建分子相互作用网络,识别功能模块。
2025-03-27 11:48:08
1437
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人