时间序列(time serie)分析系列之线性回归or随机森林4

本文通过线性回归和随机森林机器学习算法,对时间序列数据进行预测。数据集为1小时粒度,特征包括平移和平时间特征。预测结果显示,随机森林模型可能有较好表现。特征重要性分析鼓励读者深入探讨。参考多个资源,适合结合业务学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.简述

  • 时间序列数据是一种典型的数据,时间序列预测方法比较多。比如ARIMA模型、Prophet模型、指数平均法、滑动平均法等等。
  • 本文采用机器学习算法,如线性回归、随机森林等,完成时间序列预测,预测效果也比较好。

2.数据集

本文对应的数据集格式如下:

time value
2018-09-01 00:00 3221
2018-09-01 01:00 5515
2018-09-01 02:00 9971
2018-09-05 01:00 4416

如1小时粒度数据。根据历史数据,对未来一段时间数据进行预测。

3.特征介绍(精髓)

由于是单变量数据,特征主要包括两部分:平移特征和时间特征。
平移特征是指,将value向前已经平移操作shift。
时间特征指&#x

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Great1414

整理不易,谢谢支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值