动态规划具备了以下三个特点
- 把原来的问题分解成了几个相似的子问题。
- 所有的子问题都只需要解决一次。
- 储存子问题的解。
动态规划的本质,是对问题状态的定义和状态转移方程的定义(状态以及状态之间的递推关系)
字符串分割
:link
题目描述:
给定一个字符串s和一组单词dict,判断s是否可以用空格分割成一个单词序列,使得单词序列中所有的单词都是dict中的单词(序列可以包含一个或多个单词)。
例如:给定s=“leetcode”;
dict=[“leet”, “code”].
返回true,因为"leetcode"可以被分割成"leet code".
状态:F(i):字符串前i个字符是否可以被分割
状态转移方程:
F(i): j<i&&F(j)&&[j+1,i)是否可以在字典中找到
初始状态:
F(0):true
返回结果:F(s.size())
代码
class Solution {
public:
bool wordBreak(string s, unordered_set<string> &dict) {
//要想判断这个字符串能不能被分隔,就得先判断它前面的是否可以分割,在前面可以分割的基础上再试着判断后面的
vector<bool> arr(s.size()+1,0);//用来存放第几位是可以分割的
arr[0]=true;
for(int i=1;i<=s.size();i++)
{
for(int j=i-1;j>=0;--j)
{
if(arr[j]&&dict.find(s.substr(j,i-j))!=dict.end())
{
arr[i]=true;
break;
}
}
}
return arr[s.size()];
}
};
三角矩阵
link
题目描述:
思路一:
从上往下走
由于只能往下走或者往右下走,所以它的路径最小就是上一层合理的最小的加上当前层即F[i][j]+=min(F[i-1][j],F[i-1][j-1];当i=0时,只能取F[i-1][j],当i==j时只能取F[i-1][j-1];最后要求的最短路径就是最后一层的最小数
class Solution {
public:
int minimumTotal(vector<vector<int> > &triangle) {
if(triangle.empty())
return 0;
int min_e;
for(int i=1;i<triangle.size();++i)
{
for(int j=0;j<=i;++j)
{
if(j==0)
min_e=triangle[i-1][j];
else if(j==i)
min_e=triangle[i-1][j-1];
else
min_e=min(triangle[i-1][j],triangle[i-1][j-1]);
triangle[i][j]+=min_e;
}
}
int n=triangle.size()-1;
int min=triangle[n][0];
for(int i=0;i<=n;++i)
{
if(triangle[n][i]<min)
min=triangle[n][i];
}
return min;
}
};
思路二:
既然可以从上往下走,那就可以从下往上走,而且从下往上不会出现越界
F[i][j]+=min(F[i+1][j],F[i+1][j+1];
直接将最终结果加到F[0][0]上
class Solution {
public:
int minimumTotal(vector<vector<int> > &triangle) {
if(triangle.empty())
return 0;
for(int i=triangle.size()-2;i>=0;--i)
{
for(int j=0;j<=i;j++)
{
triangle[i][j]+=min(triangle[i+1][j],triangle[i+1][j+1]);
}
}
return triangle[0][0];
}
};
有障碍物的路径总数
link
题目描述:
思路:F[i][j]=(F[i-1][j]+F[i][j-1])or {0,if(arr[i][j]==0)};
特殊处理:
初始化为全0
F[i][0]=1or {0,如果这一列有一个障碍物}
F[0][j]=1 or {0,如果这一列有一个障碍物}
返回结果
F[n-1][m-1]
class Solution {
public:
/**
*
* @param obstacleGrid int整型vector<vector<>>
* @return int整型
*/
int uniquePathsWithObstacles(vector<vector<int> >& obstacleGrid) {
// write code here
int n=obstacleGrid.size();int m=obstacleGrid[n-1].size();
vector< vector<int>> ans(n,vector<int> (m,0));
for(int i=0;i<n;++i)
{
if(obstacleGrid[i][0]==1)
break;
ans[i][0]=1;
}
for(int j=0;j<m;++j)
{
if(obstacleGrid[0][j]==1)
break;
ans[0][j]=1;
}
for(int i=1;i<n;++i)
{
for(int j=1;j<m;++j)
{
if(obstacleGrid[i][j]==1)
ans[i][j]=0;
else
ans[i][j]=ans[i-1][j]+ans[i][j-1];
}
}
return ans[n-1][m-1];
}
};
带权值的最小路径和
link
题目描述:
思路:
F[i][j]=F[i][j]+min(F[i-1][j],F[i][j-1]);
特殊处理:
F[i][0]=F[i][0]+F[i-1][0];
F[0][j]=F[0][j]+F[0][j-1];
返回结果:
F[m-1][n-1];
class Solution {
public:
/**
*
* @param grid int整型vector<vector<>>
* @return int整型
*/
int minPathSum(vector<vector<int> >& grid) {
// write code here
int m=grid.size();
if(grid.empty())
return 0;
int n=grid[0].size();
vector<vector<int> >ans(grid);
for(int j=1;j<n;++j)
{
ans[0][j]+=ans[0][j-1];
}
for(int i=1;i<m;i++)
{
ans[i][0]+=ans[i-1][0];
}
for(int i=1;i<m;++i)
for(int j=1;j<n;++j)
{
ans[i][j]+=min(ans[i-1][j],ans[i][j-1]);
}
return ans[m-1][n-1];
}
};