- 博客(386)
- 资源 (22)
- 收藏
- 关注
原创 DSP-2023《Multi-view clustering for multiple manifold learning via concept factorization》
这篇论文提出了一种创新的多视图聚类方法 MMLCF,通过结合概念分解、流形正则化和一致性约束,显著提升了多视图数据的聚类性能。实验结果表明,MMLCF 在多个基准数据集上优于传统单视图和多视图聚类方法,具有较强的鲁棒性和高效性。论文在多个公开数据集上评估了 MMLCF 的性能,并与基线方法(如 K-means、CF、NMF、NCMDF、NMMF、PSNMF、MCGL 等)进行了比较。MMLCF 的目标函数旨在最小化多视图数据的重构误差,同时保留每个视图的流形结构,并通过一致性控制项协调不同视图的表示。
2025-07-09 10:43:07
522
原创 PR-2023《Auto-attention mechanism for multi-view deep embedding clustering》
提出一种,解决传统多视图聚类方法的两个瓶颈:目标函数整合四部分损失:min⎩⎨⎧自编码器损失i1∑n∥Xi−acfvi∥F2自注意力损失i1∑n∥vi−adgXi∥F2β聚类损失i∑j∈Nit∑simxixj∥zi−zj∥2i∑j∑pijlogqijpij。
2025-07-09 10:36:53
1102
原创 AI-2023《Multi-view subspace clustering for learning joint representation via low-rank sparse》
MSCLR 通过联合低秩稀疏表示和流形正则化,解决了多视图子空间聚类中一致性与特定性表示的平衡问题。其创新性目标函数设计、高效的 ALM 优化以及在 9 个数据集上的显著性能提升(平均 ACC/NMI 提升 5–15%),证实了方法的有效性。未来方向包括处理不完整视图和端到端深度表示学习。
2025-07-09 10:21:41
294
原创 关于特征选择与特征提取的本质思考
特点核心说明实际意义原始特征保留不生成新特征,仅筛选子集维持可解释性与业务逻辑一致性目标关联驱动依赖特征与预测任务的相关性确保所选特征对模型有实际贡献冗余性消除识别并移除重复信息特征提升模型效率,避免过拟合组合优化搜索在指数级空间中寻找近似最优子集平衡计算成本与效果的关键挑战任务与数据依赖性结果因数据和任务而异需针对具体场景重新评估计算高效性复杂度通常低于特征提取适用于实时系统或超大规模数据噪声过滤剔除低方差或随机特征增强模型泛化能力。
2025-07-09 09:34:32
858
原创 ESA-2024《Joint Projected Fuzzy Neighborhood Preserving C-means Clustering with Local Adaptive Learn》
PFNPCM通过联合优化聚类、降维与图学习,解决了传统方法在低维空间违反流形假设的问题。其核心创新——模糊局部相似性度量GijG_{ij}Gij和ℓ21\ell_{2,1}ℓ21-范数鲁棒设计,在多个数据集上显著提升聚类精度(最高+15%),且对噪声和异常值具有强鲁棒性。未来工作可探索参数γ\gammaγ的自适应选择及多目标优化的进一步加速。GijG_{ij}Gij是流形学习与模糊聚类的桥梁性创新数学本质:基于图结构的条件惩罚项算法角色。
2025-07-08 19:42:35
848
原创 关于在C++开发环境中对模型参数进行加密然后部署的问题
然后再存为加密的模型文件,加载模型时则进行解密,最后再执行推理任务。然后存进一个buffer里,最后再从buffer里加入密钥,然后再进行解密推理,从而保证了自己训练的模型的隐私性。主要思路还是直接读取模型参数以及模型结构的二进制数据,对已经训练好的模型如何使用openssl进行加密。很少有相关的博文介绍模型参数加密的技术博客。经过一段时间的折腾,终于实现了这一功能。
2025-07-03 16:45:50
149
原创 NeurIPS-2023《A Definition of Continual Reinforcement Learning》
这篇论文为持续强化学习提供了首个系统的理论定义,填补了该领域的理论空白。虽然没有提出具体的算法,但它为后续研究奠定了坚实的基础。开发专门针对 CRL 的高效优化算法;构建标准化的 CRL 基准测试平台;探索 CRL 在现实世界中的应用,如机器人、自动驾驶、个性化推荐等。如果你希望我进一步结合这篇论文的内容,或者你想了解某一部分的扩展分析,请随时告诉我!
2025-07-01 22:02:20
677
原创 PR-2025《Scaled Robust Linear Embedding with Adaptive Neighbors Preserving》
这些自适应权重可以被视为局部流形结构的弹性变形系数,能够动态调整局部邻域的大小,从而减少由于线性嵌入与非线性嵌入之间的差距带来的影响。传统方法通过保留样本点间的亲和关系来提取数据的本质结构,但这种方法在某些情况下无法有效捕捉到数据的全局或局部特性。此外,线性嵌入假设数据具有全局线性结构,这种假设容易受到不同局部区域耦合以及空间尺度差异的影响,导致嵌入结果失真。通过上述步骤,SLE 能够有效地在低维空间中保留数据的本质结构,同时处理噪声和异常值的影响。独立求解,使用拉格朗日乘数法得到最优解。
2025-07-01 21:57:40
884
原创 关于latex括号跨行问题
单个括号跨多行:使用\left(和\right.开始,\left.和\right)结束。多个括号并列跨多行:为每个括号单独使用\left和\right。嵌套括号跨多行:使用多重\left和\right,注意匹配顺序。手动控制括号大小:使用\big\Big\bigg\Bigg替代\left和\right。在 LaTeX 中,如果你想手动控制括号的大小(而不是使用\left和\right自动调整),可以使用以下命令来让括号变大想要的效果推荐命令稍微大一点\big(再大一些\Big(明显更大。
2025-06-27 10:25:23
1035
原创 SIAM-2011《Weighted Graph Compression for Parameter-free Clustering With PaCCo》
PaCCo通过将加权图聚类问题转化为数据压缩问题,结合MDL原理和二分k均值策略,实现了无参数、自动化的高效聚类。其目标函数通过最小化编码成本优化聚类结构,考虑边权重和连接性,优化过程通过递归分割和迭代更新实现。实验证明PaCCo在合成和真实数据上优于Metis、MCL和SpectralZM,运行时间显著优于无参数的SpectralZM。算法的实现清晰,结合启发式初始化和MDL终止准则,适合处理复杂加权图数据,如蛋白质交互网络,具有广泛的应用前景。
2025-06-24 21:36:10
756
原创 NIPS-2001《Partially labeled classification with Markov random walks》
该论文提出了一种创新的基于马尔可夫随机游走的分类方法,结合少量标记样本和未标记数据的流形结构,通过时间尺度正则化和自适应调整实现了高效分类。最大平均margin方法的闭式解和实验结果表明其在少量标记样本下的优越性,尤其适用于文本分类等高维数据场景。算法实现清晰,参数选择具有理论依据,提供了机器学习领域半监督学习的宝贵思路。
2025-06-24 21:06:51
867
原创 NIPS-2002《Learning from Labeled and Unlabeled Data with Label Propagation》
这篇论文提出了一种创新的标签传播算法,充分利用未标记数据的结构信息,通过图模型和概率传播实现半监督分类。其目标函数结合了传播固定点和熵最小化,优化过程通过迭代和参数学习实现。实验结果展示了算法在合成和现实数据集上的优越性,尤其在类比例调整和特征选择方面的贡献。算法实现简单但理论严谨,与其他方法(如Markov随机游走、均值场近似)的联系进一步增强了其学术价值。
2025-06-23 19:11:20
518
原创 IJCAI-2020《Semi-supervised Clustering via Pairwise Constrained Optimal Graph》
论文提出了一种基于图的半监督聚类方法,称为Pairwise Constrained Optimal Graph (PCOG),旨在通过引入成对约束(必须链接 Must-Link 和不能链接 Cannot-Link)来指导聚类过程,解决传统图聚类方法在处理不能链接约束和多类聚类时的局限性。其核心思想包括:该方法解决了传统半监督聚类中不能链接约束难以处理和多类聚类灵活性不足的问题,显著提升了聚类性能。论文的目标函数旨在优化图的亲和矩阵SSS,使其满足成对约束并具有ccc个连通分量。初始目标函数形式为:minS
2025-06-23 15:05:40
871
原创 TKDE-2025《Graph-Based Clustering: High-Order Bipartite Graph for Proximity Learning》
这篇论文提出了一种创新的高阶二部图聚类方法(HBSGL),通过结合高阶邻近信息和二部图结构,解决了传统邻近矩阵学习的信息缺失和高计算复杂度问题。其目标函数通过自适应权重融合高阶信息,并在Laplace秩约束下优化聚类结构。优化算法利用SVD分解和迭代更新,实现了高效收敛。实验结果验证了HBSGL在聚类性能、时间效率和可扩展性上的优越性。算法实现过程清晰,超参数易调,适合大规模无监督聚类任务,具有较高的学术和应用价值。
2025-06-22 20:48:40
811
原创 TIP-2025《Data Subdivision Based Dual-Weighted Robust Principal Component Analysis》
DRPCA 通过数据细分和双权重机制显著提高了 PCA 的鲁棒性,解决了传统 PCA 对异常值敏感的问题。其目标函数通过优化投影矩阵、数据均值和权重向量,结合迭代优化算法,实现了高效的降维和异常检测。实验结果表明,DRPCA 在重构、聚类、分类和异常检测任务中均优于现有方法,尤其在处理噪声和异常值时表现出色。算法实现简单且收敛性好,适用于大规模数据集和实际应用场景。
2025-06-22 20:11:31
1127
原创 2015-ACM《Dimensionality Reduction for $k$-Means Clustering and Low Rank Approximation》
这篇论文提供了一种通用的降维框架,通过投影代价保留草图统一处理kkk-均值聚类和低秩近似问题,显著降低了计算复杂度。目标函数基于Frobenius范数的投影误差,优化过程通过构造低维草图并在草图上求解近似解。主要贡献包括改进的误差界、低维度的kkk-均值专用方法以及统一的理论分析框架。实现过程结合了SVD、随机投影和特征选择等多种技术,适用于不同的应用场景。尽管缺乏具体的实验数据,论文的理论结果为实际实现提供了坚实的指导。
2025-06-20 21:28:19
508
原创 2023-NIPS《Joint Feature and Differentiable k-NN Graph Learning using Dirichlet Energy》
论文通过Dirichlet能量提出了一种新颖的深度无监督特征选择框架,联合优化特征选择和k-NN图学习,利用Gumbel Softmax和最优传输技术实现可微分优化。其目标函数清晰,优化过程高效,实验结果验证了其在多种数据集上的优越性能。然而,模型对超参数mmm的敏感性、计算复杂度以及对特征标准化的依赖是主要局限性。未来可通过自适应特征选择、噪声鲁棒性增强和高效算法优化进一步改进,使其更适合大规模、复杂数据场景。
2025-06-13 11:34:36
468
原创 IJCAI-2017《Multi-Class Support Vector Machine via Maximizing Multi-Class Margins》
这篇论文提出了一种新颖的多分类SVM模型,通过最大化每对类别之间的间隔,结合高效的SVRG优化算法,实现了在分类精度和收敛速度上的优越性能。其主要贡献在于理论上的等价性分析、模型的高效性和对半监督学习的扩展。实验结果表明,该模型在多种数据集上表现优异,特别是在资源受限场景下相比传统OvsO方法更具优势。算法实现上,SVRG的引入确保了非凸问题的高效优化,适合大规模多分类任务。
2025-06-13 11:31:14
624
原创 IJCAI-2021《Discrete Multiple Kernel $k$-means》
DMKKM通过直接优化离散聚类指示矩阵和核系数,解决了传统MKKM的信息丢失、核冗余和超参数依赖问题。其目标函数巧妙地结合核相关性度量和聚类质量优化,通过高效的坐标下降法和QP求解实现快速收敛。实验结果验证了其在多个数据集上的优越性能和实用性,为多核聚类提供了一种高效、鲁棒且无参数的解决方案。
2025-05-26 08:26:47
289
原创 NIPS-2013《Distributed PCA and $k$-Means Clustering》
该论文通过分布式PCA和核集的结合,解决了分布式kkk-均值聚类中的高维数据通信成本问题。算法通过局部和全局PCA降维,结合核集构造,实现了与数据大小和维度无关的通信成本,同时理论上保证了聚类质量。实验结果验证了算法在真实数据集上的有效性,特别是在高维数据场景下,通信成本降低显著,聚类成本增加极小。
2025-05-24 10:57:34
832
原创 TIT-2014《Randomized Dimensionality Reduction for $k$-means Clustering》
该论文通过线性代数视角和随机化技术,为kkk-means 聚类提供了高效的降维方法,显著降低了计算复杂性,同时保持理论上的近似保证。特征选择和特征提取算法的实现过程清晰,结合了现代矩阵分解和随机投影技术。实验结果进一步验证了算法在实际数据集上的有效性,为未来研究1ε1ε近似误差的降维方法提供了方向。
2025-05-24 10:42:52
860
原创 NIPS-2012《Accelerated $k$-means with adaptive distance bounds》
该论文提出了一种高效的kkk-means加速算法,通过自适应调整距离下界数量bbb,在中等维度数据上实现了比Elkan和Hamerly算法更好的性能。其核心创新在于结合两者的优点并动态调参,实验结果验证了其在k≥50k \geq 50k≥50和中等维度(20-120维)场景下的优越性。算法实现通过维护上界、下界和中心移动距离,利用三角不等式减少距离计算,同时自适应调整bbb以优化开销。
2025-05-24 10:04:00
263
原创 ICML-2003《Using the Triangle Inequality to Accelerate $k$-Means》
这篇论文通过三角不等式和上下界维护,显著加速了kkk-均值算法,减少了距离计算次数,尤其在kkk较大和高维数据上效果显著。其通用性和精确性使其适用于多种场景。实验结果验证了算法的高效性,尤其在k≥20k \geq 20k≥20时,加速比远超现有方法。实现上,算法通过细粒度的距离筛选和跨迭代信息传递,实现了高效且精确的优化。
2025-05-24 09:50:37
325
原创 ICML-2015《Yinyang K-Means: A Drop-In Replacement of the Classic K-Means with Consistent Speedup》
Yinyang K-Means通过全局、分组和局部过滤机制,以及中心更新优化,显著降低了K-Means的计算开销,同时保持与经典算法相同的聚类结果。其弹性设计和高效的空间利用使其适应多种场景,实验结果证明其在多种数据集和硬件配置下的优越性能。算法的实现简单,易于集成,成为经典K-Means的理想替代方案。
2025-05-24 09:37:36
842
原创 SIAM-2010《Making $k$-means even faster》
Hamerly的算法通过引入单一新颖下界和优化距离界更新,显著加速了kkk-means算法,特别在低维和中维数据上表现优异。其简单性、低内存需求和并行化潜力使其适用于大规模数据集和内存受限场景。实验结果验证了其高效性,跳跃最内层循环的频率高达80%以上,内存使用量远低于其他加速算法。未来可通过结合Elkan算法或引入树结构进一步优化,适应更广泛的应用场景。
2025-05-24 09:21:20
614
原创 SIAM-2007《k-means++: The Advantages of Careful Seeding》
k-means++ 通过D2D^2D2加权种子选择方法显著改进了 k-means 算法,提供理论上的OlogkO(\log k)Ologk竞争性保证和实践中的优越性能。其目标函数是最小化平方距离和,优化过程结合了随机化的种子选择和标准的 k-means 迭代。实验结果验证了其在多种数据集上的高效性和高质量聚类能力。算法实现简单,易于扩展到更广义的度量空间和潜在函数,为聚类问题提供了一个兼具理论和实践优势的解决方案。
2025-05-24 08:05:30
609
原创 TIT-1982《Least Squares Quantization in PCM》
这篇论文为 PCM 系统中的量化设计提供了理论和实践指导,通过最小均方误差准则优化量化区间和量化值。它的主要贡献在于将渐进分析扩展到有限量化级别,并提出了实用的迭代算法。实验结果验证了理论的有效性,尤其是在高斯和拉普拉斯分布下。算法的实现过程清晰,具有较强的可操作性,现代计算工具可以进一步提高其效率。尽管论文未解决绝对最优条件的确定问题,但其理论框架和方法对后续量化研究(如 Lloyd-Max 算法)产生了深远影响。
2025-05-23 13:38:27
561
原创 ML-2009《Minimum Sum-of-Squares Clustering》
这篇论文通过简洁的归约方法,证明了欧几里得最小平方和聚类问题的NP-hard性,纠正了之前文献中的错误证明。其目标函数是经典的平方距离和,优化通常依赖k-means等启发式算法。论文的主要贡献在于理论复杂性分析,而非实验或算法设计。证明的实现过程通过矩阵构造将图割问题转化为聚类问题,展示了理论计算机科学与机器学习的交叉价值。
2025-05-23 11:28:55
12
原创 ESA-2013A Comparative Study of Efficient Initialization Methods for the K-Means Clustering Algorithm
论文通过系统综述和实验比较,揭示K-Means初始化方法的性能差异,推荐Bradley-Fayyad、贪心k-means++、Var-Part和PCA-Part作为优选方法。目标函数SSE\text{SSE}SSE通过迭代分配和更新优化,初始化方法显著影响收敛质量。实验结果表明,非确定性方法在多次运行时表现优异,而确定性方法适合单次运行场景。算法实现高效,结合快速K-Means变体,适用于大规模数据聚类。
2025-05-23 11:19:46
804
原创 SSRN-2019《An Accountability of Various Clustering Techniques for Improvement of Page Searching Proce
论文通过比较多种聚类技术,探讨其在网页日志挖掘中的应用,强调K-Means及其变体的简单性和实用性,同时揭示各算法的局限性。目标函数以最小化簇内距离为主,优化过程依赖迭代分配和更新。贡献在于系统比较和应用指导,但缺乏实验验证。算法实现清晰,适合网页日志分析,K-Means++和Vector Matrix方法尤为突出。
2025-05-23 11:10:40
633
原创 LNCS-2009《Adaptive Sampling for $k$-Means Clustering》
深蓝学院《深度神经网络加速:cuDNN 与 TensorRT》论文的核心思想是通过自适应采样(adaptive sampling)改进kkk-means聚类的初始化过程,提出一种高效的算法,生成O(k)O(k)O(k)个中心,以常数概率获得kkk-means问题的常数因子双标准(bi-criteria)近似解,并在这些中心中通过线性规划(LP)技术提取kkk个中心,获得常数因子近似解。传统kkk-means++算法通过D2D^2D2采样获得期望上O(logk)O(\log k)O(logk)近似,但其时
2025-05-23 11:04:53
822
原创 AAAI-2016《Approximate K-Means++ in Sublinear Time》
K-MC²算法通过MCMC近似D2D^2D2采样,解决了kkk-means++在大规模数据集上的初始化效率问题,在亚线性时间复杂度下保留了OlogkOlogk近似保证。其理论分析基于温和的分布假设,实验结果在多个真实数据集上验证了其高效性和竞争力。算法实现简单,适合多种聚类场景,为大规模数据聚类提供了实用工具。
2025-05-23 11:00:27
951
原创 TPDS-2014《Efficient $k$-means++ Approximation with MapReduce》
MapReducekkk-means++算法通过一次MapReduce作业实现高效初始化,结合剪枝策略和理论证明,解决了传统kkk-means++在大规模数据上的低效问题。其在真实和合成数据集上的实验结果验证了其高效性和良好的近似质量,特别适合云计算环境下的海量数据聚类任务。
2025-05-23 08:57:50
996
原创 PR-2014《The MinMax K-Means clustering algorithm》
MinMaxkkk-Means通过引入加权目标函数和自适应参数调整,显著改进了kkk-Means的初始化敏感性问题,生成方差均衡的簇,并在多种数据集上表现出色。其主要贡献在于提出了一种新的优化框架,结合权重学习和参数自适应,使算法更鲁棒且适用于多样化的应用场景。尽管运行时间较长,但其高质量的聚类结果和作为初始化策略的潜力使其在聚类任务中具有重要价值。
2025-05-23 08:52:29
701
原创 TKDE-2025《Anchor Guided Unsupervised Domain Adaptation》
AGDA 通过引入锚点引导的局部结构挖掘和联合优化框架,显著提升了无监督域适应的性能。其目标函数综合了 MMD 损失、锚点引导损失和正则化项,通过交替优化高效求解。实验结果表明,AGDA 在多个基准数据集上优于传统和深度方法,展现了高效性和鲁棒性。算法实现过程清晰,易于复现,适合复杂分布的域适应任务。
2025-05-19 19:19:20
2578
2
原创 TII-2024《AGP-Net: Adaptive Graph Prior Network for Image Denoising》
AGP-Net通过图构造、GSP和GNP模块,成功解决了图像去噪中的长距离依赖、特征不足和泛化问题。其创新点在于多尺度依赖建模和自适应正则化机制,实验结果证明了其在合成和真实噪声数据集上的优越性能。算法实现过程清晰,结合编码器-解码器框架和模块化设计,具有较高的可扩展性和实用性。
2025-05-16 18:43:20
873
原创 PR-2021《Channel Attention and Spatial Graph Convolutional Network》
这篇论文通过提出CASGCN模型,结合通道注意力机制和空间图卷积网络,显著提升了单幅图像超分辨率的性能。其核心在于动态邻接矩阵、多尺度特征提取和全局融合策略,有效捕捉全局自相似性和通道重要性。实验结果验证了其在BI和BD退化模型下的优越性,尤其在大尺度因子下表现突出。算法实现清晰,训练和测试过程高效,模型在性能和参数量之间取得了良好平衡,为SISR领域提供了新的研究思路。
2025-05-16 18:37:11
740
原创 TIP-2021《SRGAT: Single Image Super-Resolution With Graph Attention Network》
SRGAT 是一种创新的单幅图像超分辨率方法,通过引入图注意力网络充分利用图像内部 patch 的重复性,结合并行分支设计和反馈机制,显著提升了重建质量。其L1L_1L1损失函数简单有效,优化过程通过 ADAM 和反馈机制保证收敛。实验结果表明,SRGAT 在多个基准数据集上超越或匹敌最先进方法,尤其在复杂场景中表现优异。算法实现清晰,图相似性分支和内容分支的协同工作为其高效性和鲁棒性提供了保障。
2025-05-16 18:33:21
1041
原创 TIP-2020《Image Restoration via Simultaneous Nonlocal Self-Similarity Priors》
这篇论文提出了一种创新的图像恢复方法,通过同时利用内部和外部 NSS 先验,结合 SSR 模型,显著提升了图像去噪、去块效应和去模糊的性能。其目标函数巧妙地整合了数据保真项和两种 NSS 先验的正则化项,通过交替最小化算法和自适应参数调整策略高效求解。实验结果验证了 SNSS 模型在客观和主观质量上的优越性,优于多种传统和最先进方法。算法实现过程清晰,分为外部 NSS 先验学习和图像恢复两个阶段,具有较高的可操作性和实用性。如果需要进一步探讨某个部分(如代码实现或特定实验设置),请告诉我!
2025-05-16 18:28:23
835
2013CVPR 点云超体分割论文Jeremie Papon
2021-09-24
2012顶会文章点云Don算法论文
2021-09-24
图像处理岗面试60题及其答案解析.pdf
2020-03-07
yolov5-obb旋转目标检测直接运行版,只需配置好虚拟环境就可直接运行,包含部分demo数据集
2023-04-12
yolov7-pose TensorRT推理 window平台以及ubuntu平台都可
2023-02-10
ORB-SLAM2 windows下免配置第三库,工程已配置好,下载配置好图片路径即可直接运行
2022-07-05
imagenet2012数据集及标签.rar
2021-06-10
LDA算法原理详解及代码,另附LDA数学八卦高清PDF版笔记整理
2018-04-01
Benchmark Datasets.rar
2019-06-16
YaleFace数据集包含mat文件以及原图.rar
2019-12-13
PIE图片数据集包含原图.rar
2019-12-13
FSRobust_ALM.m
2020-06-21
《Python数据挖掘入门与实践 》 作者:Robert Layton (高清pdf版附代码及部分数据集,彩图)
2018-03-10
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人