Python科学计算库Numpy
本文从实战角度从几下几个方面对于Numpy进行全面演示,人工智能关键在神经网络,而神经网络又都是矩阵运算,矩阵运算的基础就是Numpy.全面掌握好Numpy就为人工智能开发打下深厚基础。
1 Numpy概述
2 array结构
3 数值计算
4 排序
5 数组形状
6 数组生成
7 运算
8 随机模块
9 读写
10 练习题
确保第一个事,咱们要用的库已经安装好了
import numpy as np
array = [1,2,3,4,5]
array + 1
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[2], line 2
1 array = [1,2,3,4,5]
----> 2 array + 1
TypeError: can only concatenate list (not "int") to list
要想给一个list加1,不能直接这么操作。但是我们把它转成一个numpy最底层的ndarray结构,就可以对list做数学运算了
array = np.array([1,2,3,4,5])
print (type(array))
<class 'numpy.ndarray'>
array2 = array + 1
array2
array([2, 3, 4, 5, 6])
array2 +array
array([ 3, 5, 7, 9, 11])
array2 * array
array([ 2, 6, 12, 20, 30])
array[0]
np.int64(1)
array[3]
np.int64(4)
array
array([1, 2, 3, 4, 5])
array.shape
(5,)
只有adarray有shape属性,对于普通的list,没有这个shape
list1 = [1,2,3,4,5]
list1.shape
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[13], line 2
1 list1 = [1,2,3,4,5]
----> 2 list1.shape
AttributeError: 'list' object has no attribute 'shape'
np.array([[1,2,3],[4,5,6]])
array([[1, 2, 3],
[4, 5, 6]])
结构
对于ndarray结构来说,里面所有的元素必须是同一类型的 如果不是的话,会自动的向下进行转换.把一个list转成ndarray
list = [1,2,3,4,5]
ndarray = np.array(list)
ndarray
array([1, 2, 3, 4, 5])
ndarray基本属性操作,dtype看类型,shape形状,ndim维度,fill填充
type(ndarray)
numpy.ndarray
ndarray.dtype
dtype('int64')
ndarray.shape
(5,)
ndarray.ndim
1
ndarray1 = np.array([[1,2,3],[4,5,6]])
ndarray1.ndim
2
ndarray1.shape
(2, 3)
fill可以全部填充
ndarray.fill(0)
ndarray
array([0, 0, 0, 0, 0])
索引与切片:跟Python都是一样的 还是从0开始的
list = [1,2,3,4,5]
array = np.array(list)
array[0]
np.int64(1)
array[1:3]
array([2, 3])
矩阵格式,多维形式
array = np.array([[1,2,3],
[4,5,6],
[7,8,9]])
array
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
array.shape
(3, 3)
array.size
9
array.ndim
2
修改里面的值
array[1,1] = 10
array
array([[ 1, 2, 3],
[ 4, 10, 6],
[ 7, 8, 9]])
array[1]
array([ 4, 10, 6])
array[:,1]
array([ 2, 10, 8])
array[0,0:2]
array([1, 2])
array2 = array
array2
array([[ 1, 2, 3],
[ 4, 10, 6],
[ 7, 8, 9]])
array2[1,1] = 100
array2
array([[ 1, 2, 3],
[ 4, 100, 6],
[ 7, 8, 9]])
array
array([[ 1, 2, 3],
[ 4, 100, 6],
[ 7, 8, 9]])
可以看到=这种赋值,是一种浅拷贝,就是2个变量指向同一个地址,其中一个变量改了值,另一个也就改了。如何进行深拷贝,可以使用copy
array2 = array.copy()
array2
array([[ 1, 2, 3],
[ 4, 100, 6],
[ 7, 8, 9]])
array2[1,1] = 1000
array2
array([[ 1, 2, 3],
[ 4, 1000, 6],
[ 7, 8, 9]])
array
array([[ 1, 2, 3],
[ 4, 100, 6],
[ 7, 8, 9]])
array = np.arange(0,100,10)
mask = np.array([0,0,0,1,1,1,0,0,1,1],dtype=bool)
mask
array([False, False, False, True, True, True, False, False, True,
True])
array[mask]
array([30, 40, 50, 80, 90])
random_array=np.random.rand(10)
random_array
array([0.81861097, 0.09494575, 0.81619337, 0.14018824, 0.11683594,
0.3898