Python 数据科学和科学计算领域的基石Numpy

Python科学计算库Numpy

本文从实战角度从几下几个方面对于Numpy进行全面演示,人工智能关键在神经网络,而神经网络又都是矩阵运算,矩阵运算的基础就是Numpy.全面掌握好Numpy就为人工智能开发打下深厚基础。
1 Numpy概述
2 array结构
3 数值计算
4 排序
5 数组形状
6 数组生成
7 运算
8 随机模块
9 读写
10 练习题

确保第一个事,咱们要用的库已经安装好了

import numpy as np
array = [1,2,3,4,5]
array + 1
---------------------------------------------------------------------------

TypeError                                 Traceback (most recent call last)

Cell In[2], line 2
      1 array = [1,2,3,4,5]
----> 2 array + 1


TypeError: can only concatenate list (not "int") to list

要想给一个list加1,不能直接这么操作。但是我们把它转成一个numpy最底层的ndarray结构,就可以对list做数学运算了

array = np.array([1,2,3,4,5])
print (type(array))
<class 'numpy.ndarray'>
array2 = array + 1
array2
array([2, 3, 4, 5, 6])
array2 +array
array([ 3,  5,  7,  9, 11])
array2 * array
array([ 2,  6, 12, 20, 30])
array[0]
np.int64(1)
array[3]
np.int64(4)
array
array([1, 2, 3, 4, 5])
array.shape
(5,)

只有adarray有shape属性,对于普通的list,没有这个shape

list1 = [1,2,3,4,5]
list1.shape
---------------------------------------------------------------------------

AttributeError                            Traceback (most recent call last)

Cell In[13], line 2
      1 list1 = [1,2,3,4,5]
----> 2 list1.shape


AttributeError: 'list' object has no attribute 'shape'
np.array([[1,2,3],[4,5,6]])
array([[1, 2, 3],
       [4, 5, 6]])

结构

对于ndarray结构来说,里面所有的元素必须是同一类型的 如果不是的话,会自动的向下进行转换.把一个list转成ndarray

list = [1,2,3,4,5]
ndarray = np.array(list)
ndarray
array([1, 2, 3, 4, 5])

ndarray基本属性操作,dtype看类型,shape形状,ndim维度,fill填充

type(ndarray)
numpy.ndarray
ndarray.dtype
dtype('int64')
ndarray.shape
(5,)
ndarray.ndim
1
ndarray1 = np.array([[1,2,3],[4,5,6]])
ndarray1.ndim
2
ndarray1.shape
(2, 3)

fill可以全部填充

ndarray.fill(0)
ndarray
array([0, 0, 0, 0, 0])

索引与切片:跟Python都是一样的 还是从0开始的

list = [1,2,3,4,5]
array = np.array(list)
array[0]
np.int64(1)
array[1:3]
array([2, 3])

矩阵格式,多维形式

array = np.array([[1,2,3],
                 [4,5,6],
                 [7,8,9]])
array
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])
array.shape
(3, 3)
array.size
9
array.ndim
2

修改里面的值

array[1,1] = 10
array
array([[ 1,  2,  3],
       [ 4, 10,  6],
       [ 7,  8,  9]])
array[1]
array([ 4, 10,  6])
array[:,1]
array([ 2, 10,  8])
array[0,0:2]
array([1, 2])
array2 = array
array2
array([[ 1,  2,  3],
       [ 4, 10,  6],
       [ 7,  8,  9]])
array2[1,1] = 100
array2
array([[  1,   2,   3],
       [  4, 100,   6],
       [  7,   8,   9]])
array
array([[  1,   2,   3],
       [  4, 100,   6],
       [  7,   8,   9]])

可以看到=这种赋值,是一种浅拷贝,就是2个变量指向同一个地址,其中一个变量改了值,另一个也就改了。如何进行深拷贝,可以使用copy

array2 = array.copy()
array2
array([[  1,   2,   3],
       [  4, 100,   6],
       [  7,   8,   9]])
array2[1,1] = 1000
array2
array([[   1,    2,    3],
       [   4, 1000,    6],
       [   7,    8,    9]])
array
array([[  1,   2,   3],
       [  4, 100,   6],
       [  7,   8,   9]])
array = np.arange(0,100,10)
mask = np.array([0,0,0,1,1,1,0,0,1,1],dtype=bool)
mask
array([False, False, False,  True,  True,  True, False, False,  True,
        True])
array[mask]
array([30, 40, 50, 80, 90])
random_array=np.random.rand(10)
random_array
array([0.81861097, 0.09494575, 0.81619337, 0.14018824, 0.11683594,
       0.3898
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值