【环境搭建】(二)在Ubuntu22.04安装/卸载软件Anaconda

一个愿意伫立在巨人肩膀上的农民......

1、Anaconda的主要功能

Anaconda是一个Python环境管理工具,因为不同的Python项目中可能需要同一个库的不同版本,为了避免冲突,Anaconda可以对不同Python项目创建自己的运行环境,互不影响。

2、Anaconda安装包获取

Anaconda安装包的获取分为两种方式,一种是在Ubuntu终端直接使用命令获取,另一种是进入网站下载获取指定版本的安装包。第一种获取过程需要待安装的设备是联网状态。

a.wget下载Anaconda安装脚本:
wget -P /tmp https://repo.anaconda.com/archive/Anaconda3-2020.02-Linux-x86_64.sh

具体下载速度与设备网络连接有关,下载的.sh安装包在当前激活的文件加目录下可找到。

b.通过Anaconda官方网站获取安装包:

Anaconda全版本安装包地址,网络界面如下:

从该网页可以根据自己系统信息选择需要的Anaconda安装被版本,此处我是用的是Ubuntu系统22.04。

3、Anaconda安装

首先在终端中进入到Anaconda安装包所在的路径中,运行脚本以开始安装过程:

bash /tmp/Anaconda3-2020.02-Linux-x86_64.sh

然后会看到类似以下的输出:

 /*Enter*/ 继续。要滚动浏览许可证,请使用 /*Enter*/ 键。审查完许可后,将要求您批准许可条款:

输入yes接受许可,系统将提示您选择安装位置:

默认位置对于大多数用户来说已经就可以。按 /*Enter*/ 确认安装位置。安装可能需要一些时间,完成后,脚本将询问您是否要运行conda init。输入yes

这会将命令行工具conda添加到系统的PATH中。

要激活Anaconda安装,您可以关闭并重新打开终端,或者通过键入以下命令来将新的PATH环境变量加载到当前的shell会话中:

source ~/.bashrc

至此,我们已经在Ubuntu22.04上成功安装了Anaconda,然后就可以开始使用它了。

4、更新Anaconda

Anaconda的更新是非常简单的,只需要在终端里运行下面脚本:

conda update --all

如果有更新可用,conda将显示一个列表,并提示您确认更新,如果有,在终端输入y,就可以自动更新了。

5、卸载Anaconda

如果要从Ubuntu系统上卸载Anaconda,请删除Anaconda安装目录以及在安装过程中创建的所有文件:

rm -rf ~/anaconda3 ~/.condarc ~/.conda ~/.continuum

然后打开/bashrc文件,从PATH环境变量中删除Anaconda相关的语句。

在Anaconda中新建/删除环境,请见【环境配置后续】...

### 安装 Ollama 和配置 Anaconda #### 安装 Ollama 要在 Ubuntu 22.04安装 Ollama,可以按照以下方法操作: 1. 首先更新系统的软件包列表: ```bash sudo apt update && sudo apt upgrade -y ``` 2. 下载 Ollama 的进制文件并将其移动到 `/usr/local/bin` 目录下以便全局访问: ```bash wget https://ollama.ai/download/linux-amd64/ollama-linux-amd64.gz gzip -d ollama-linux-amd64.gz sudo mv ollama-linux-amd64 /usr/local/bin/ollama chmod +x /usr/local/bin/ollama ``` 3. 测试 Ollama 是否成功安装: ```bash ollama version ``` 如果命令返回版本号,则说明安装成功。 --- #### 配置 NVIDIA Container Toolkit (可选) 如果计划运行 GPU 加速模型,需安装 NVIDIA Container Toolkit[^2]。执行以下命令完成安装: ```bash distribution=$(. /etc/os-release;echo $ID$VERSION_ID) curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list sudo apt-get update sudo apt-get install -y nvidia-container-toolkit sudo systemctl restart docker ``` 完成后可以通过 `docker run --rm --gpus all nvidia/cuda:12.0-base nvidia-smi` 来验证 GPU 支持是否正常工作。 --- #### 安装和配置 Anaconda 以下是基于 Miniconda 的安装过程以及环境配置的方法: 1. **下载 Miniconda 脚本** 使用 Bash Shell 执行以下命令来获取 Miniconda 安装脚本[^1]: ```bash wget https://repo.anaconda.com/miniconda/Miniconda3-py310_25.1.1-2-Linux-x86_64.sh bash Miniconda3-py310_25.1.1-2-Linux-x86_64.sh ``` 2. **初始化 Conda 环境** 在安装过程中会提示是否将 Conda 添加到 shell 初始化文件中。输入 `yes` 或手动编辑 `.bashrc` 文件以激活 Conda: ```bash source ~/.bashrc conda init ``` 3. **创建虚拟环境** 创建一个新的 Python 环境用于管理依赖项: ```bash conda create -n myenv python=3.10 conda activate myenv ``` 4. **安装必要的库** 如果需要特定的机器学习框架或其他工具,可以在环境中通过 pip 或 conda 进行安装。例如: ```bash conda install pytorch torchvision torchaudio cudatoolkit -c pytorch ``` --- #### 结合 Ollama 和 Anaconda 为了使 Ollama 及其相关功能能够在 Anaconda 环境中无缝协作,建议在同一个终端窗口中启动两者的服务,并确保路径变量已正确设置。例如,在激活 Conda 环境后可以直接调用 Ollama CLI 工具。 --- ### 总结 上述流程涵盖了从基础系统准备到高级工具集成的过程,能够帮助用户快速搭建适合 AI 开发需求的工作环境
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值