在Hadoop上运行TensorFlow的环境变量配置

本文详细介绍了如何在Hadoop上配置环境变量以运行TensorFlow。首先确保Hadoop及相关依赖安装正确,然后在.bashrc中添加环境变量并验证Hadoop配置。当能成功导入TensorFlow但报HDFS连接错误时,说明TensorFlow未正确配置。通过进一步调整环境,包括可能需要重新source ~/.bashrc以解决CUDA库找不到的问题,最终能够成功运行包含TensorFlow的.py文件。对于后台任务,需将指令写入.sh脚本并通过nohup执行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先确保下载了Hadoop,jre等等等等前面所有的准备工序(因为我是有打包好的工具包,所以前面的下载之类的我都没有操心,如有需要可以百度,这里主要讲环境配置)

第一步:

~/.bashrc中添加环境变量:

###我这里注释的两行按逻辑来说直接加到文件里然后source一下就行
###可是我加入后会导致import tensorflow时找不到cuda库,所以在这里注释掉
###大家可以试试先用最简单的source,能一次成功是最好的

#export LD_LIBRARY_PATH=/your/path/to/hadoop/lib/native${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
export JAVA_HOME=/your/path/to/jdk1.8.0_171
export JRE_HOME=${JAVA_HOME}/jre
export CLASSPATH=.:${JAVA_HOME}/lib:${JRE_HOME}/lib
export PATH=${JAVA_HOME}/bin:$PATH
#export LD_LIBRARY_PATH=/your/path/to/jdk1.8.0_171/jre/lib/amd64/server${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
export HADOOP_HOME=/your/path/to/hadoop
export PATH=${HADOOP_HOME}/bin:$PATH

source ~/.bashrc

在终端试一下Hadoop fs -ls能够正常运行就证明hadoop配置正确
然后运行自己的.py文件
如果能import tensorflow 但是报错hdfsBuilderConnect(forceNewInstance=0, nn=default, port=0, kerbTicketCachePath=(NULL), userName=(NULL)) error:那就说明Tensorflow没有和Hadoop配置好,如果没有报错并能够顺利读取ha

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值