数字图像处理中的形态学操作

本文详细介绍了数字图像处理中的形态学操作,包括腐蚀、膨胀、开操作、闭操作及其对二值图像和灰度图像的影响。强调了在学习过程中独立思考的重要性,并指出了一些常见误解,如腐蚀实际上是对高亮部分进行的操作。同时,文章提供了开操作和闭操作的几何解释,并简述了形态学滤波、梯度、顶帽和黑帽变换的概念。最后,作者分享了联系方式,邀请感兴趣的人进行交流。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PS:看了好几篇博客,发现里面好多东西都是漏洞百出,关键是这些博客的浏览量都不少,很容易给一些初学者造成影响,堪称误人子弟!还是希望大家在学习的过程中能够独立思考,遇到问题多深入研究,等研究透彻了就会是柳暗花明又一村!

概要:首先,我们要在大的方向上对图像处理中的形态学操作有所认识,就是对二值图像和灰度图像的处理,其实这两者很类似,只要能把对二值图像的处理完全理解了,对灰度图像也就是维数扩展而已。其次,列举出最常用的几种操作:腐蚀、膨胀、开操作、闭操作、形态学滤波、形态学梯度、顶帽、黑帽以及测地腐蚀、测地膨胀,要认真理解这些操作以及部分原理。

A. 二值图像中的形态学操作

1. 腐蚀

什么是腐蚀?从字面意思我们就能理解到腐蚀的大概意思,所以初学者很容易理解成将粗线条细化(也就是变相的腐蚀),这种理解是不正确的,虽然你想象得到的结果有可能是正确的(稍后会做解释)。首先,腐蚀操作其实就是某种最小值滤波操作,就是以一个卷积核(或者模板、结构元素)做卷积的过程,当然更严谨的概念可以参照集合论的知识。然后要注意,你所理解的“腐蚀”(包括“膨胀”)都是要针对高亮部分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值