一日一技:Python标准库中的缓存装饰器

本文介绍了缓存技术的概念及其在Web应用和算法优化中的应用,强调了Python标准库functools.lru_cache装饰器在实现内存缓存中的作用,通过示例展示了如何使用lru_cache提升函数性能,如计算斐波纳契数列。同时也讨论了缓存的优缺点和适用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

缓存

缓存是一种出色的技术,用于改善各种应用程序的性能,其背后的理念是将好不容易得到的结果存储在临时区域,这种区域被称为缓存区,可以是内存、磁盘或数据库等。

Web应用大量地使用了缓存技术,在Web应用中,常常会发生多位用户同时请求同一个页面的情况,在这种情况下,Web应用可只生成网页一次,并向用户提供已渲染好的页面,而不是在每位用户请求时都重复生成页面,理想情况下,缓存技术还需使用有效的验证机制,以便需要更新网页时重新生成,再将其提供给用户,智能缓存技术让Web应用能够处理更多的用户,同时消耗更少的资源,在某下情况下还可预先进行缓存,例如,在用户在线观看视频时,缓存视频的后续部分。

对于有些算法,还可使用缓存技术来改善其性能,一个典型示例是计算斐波纳契数列,由于计算斐波纳契数列中的下一个数字时,需要用到前一个数字,因此可存储并重用以前的结果,从而极大地缩短运行时间。

在应用程序中存储并重用以前的函数调用结果通常被称为memoization,这也是一种缓存技术,还有其他几种算法可利用memoization来极大地改善性能,这种编程方法通常被称为动态规划。

但是缓存带来的好处并非是无条件的,实际上,通常以牺牲一些空间为代价来换取应用程序的速度,另外,如果缓存区位于网上,还需要付出传输代价和花费通信时间,你应该进行评估,确定在什么情况下使用缓存可提供便利,以及你愿意以多少空间来换取速度的提升。

Python标准库中的缓存装饰器

Python标准库包含了模块functools,让你能够直接使用基于内存的缓存,通过使用装饰器functools.lru_cache(),你可轻松地缓存函数的结果。

下面的示例中,我们创建了一个名为sum_func的函数,它打印语句“计算中...”并返回两个数字的和,我们运行了这个函数两次,从输出可以看出,第一次执行函数sum_func时打印了字符串“计算中...”,而第二次则直接返回了结果,没有运行该函数。

from functools import lru_cach
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值