1. 向量的点积
点积是指两个维度相同的向量相乘,结果是对应坐标配对的乘积之和:
eg:
[12]∙[12]=1×1+2×3=7\left[\begin{array}{l}
1 \\
2
\end{array}\right] \bullet\left[\begin{array}{l}
1 \\
2
\end{array}\right]=1 \times 1+2 \times 3=7[12]∙[12]=1×1+2×3=7
留意:
- v⃗⋅w⃗=w⃗⋅v⃗\vec{v} \cdot \vec{w}=\vec{w} \cdot \vec{v}v⋅w=w⋅v
- 向量方向相同时结果为正,
- 向量方向相反时结果为负,
- 向量方向垂直结果为0.
几何意义:点积 v⃗⋅w⃗\vec{v} \cdot \vec{w}v⋅w 的结果是向量 w⃗\vec{w}w在v⃗\vec{v}v 上的正交投影长度乘以 v⃗\vec{v}v 的长度;本质是先投影再缩放.
2. 向量的叉积
几何意义:两个向量叉积的结果是第三个向量,结果向量垂直于原向量组成的平行四边形,长度等于平行四边形的面积,方向取决于原向量的相对位置,可以使用右手定则判断。
叉积 v⃗×w⃗\vec{v} \times \vec{w}v×w 等同于寻找一个向量 p⃗\vec{p}p (更为熟知的叫法是法向量),满足下面的等式:
[p1p2p3]⋅[xyz]=det([xv1w1yv2w2zv3w3])\begin{array}{l}
\left[\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\operatorname{det}\left(\left[\begin{array}{lll}
x & v_{1} & w_{1} \\
y & v_{2} & w_{2} \\
z & v_{3} & w_{3}
\end{array}\right]\right)\end{array}
p1p2p3⋅xyz=detxyzv1v2v3w1w2w3
⇓\Downarrow ⇓
[v1v2v3]×[w1w2w3]=det([i⃗v1v1j⃗v2w2k⃗v3w3])=[v2w3−v3w2v3w1−v1w3v1w2−v2w1]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] \times\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right]=\operatorname{det}\left(\left[\begin{array}{ccc}
\vec{i} & v_{1} & v_{1} \\
\vec{j} & v_{2} & w_{2} \\
\vec{k} & v_{3} & w_{3}
\end{array}\right]\right)=\left[\begin{array}{l}
v_{2} w_{3}-v_{3} w_{2} \\
v_{3} w_{1}-v_{1} w_{3} \\
v_{1} w_{2}-v_{2} w_{1}
\end{array}\right]v1v2v3×w1w2w3=detijkv1v2v3v1w2w3=v2w3−v3w2v3w1−v1w3v1w2−v2w1
留意:
- v⃗⊥v⃗×w⃗,w⃗⊥v⃗×w⃗\vec{v} \perp \vec{v} \times \vec{w}, \quad \vec{w} \perp \vec{v} \times \vec{w}v⊥v×w,w⊥v×w
- v⃗×v⃗=0→,0→×v⃗=0→\vec{v} \times \vec{v}=\overrightarrow{0}, \quad \overrightarrow{0} \times \vec{v}=\overrightarrow{0}v×v=0,0×v=0
- v⃗//w⃗⇔v⃗×w⃗=0→\vec{v} / / \vec{w} \Leftrightarrow \vec{v} \times \vec{w}=\overrightarrow{0}v//w⇔v×w=0
- v⃗×w⃗=−w⃗×v⃗\vec{v} \times \vec{w}=-\vec{w} \times \vec{v}v×w=−w×v
- (λv⃗)×w⃗=λ(v⃗×w⃗)(\lambda \vec{v}) \times \vec{w}=\lambda(\vec{v} \times \vec{w})(λv)×w=λ(v×w)
- (v⃗+w⃗)×l⃗=v⃗×l⃗+w⃗×l⃗(\vec{v}+\vec{w}) \times \vec{l}=\vec{v} \times \vec{l}+\vec{w} \times \vec{l}(v+w)×l=v×l+w×l
若v⃗×w⃗>0,则v⃗在w⃗顺时针方向若 \vec{v} \times \vec{w}>0 , 则 \vec{v} 在 \vec{w} 顺时针方向若v×w>0,则v在w顺时针方向
若v⃗×w⃗<0,则v⃗在w⃗逆时针方向若 \vec{v} \times \vec{w}<0 , 则 \vec{v} 在 \vec{w} 逆时针方向若v×w<0,则v在w逆时针方向
若v⃗×w⃗>0,则v⃗与w⃗同线,同向或反向若 \vec{v} \times \vec{w}>0 , 则 \vec{v} 与 \vec{w} 同线,同向或反向若v×w>0,则v与w同线,同向或反向