向量的点积与叉积

文章介绍了向量的两种基本运算:点积和叉积。点积表示的是向量间的乘积和,其结果可表示一个向量在另一个向量上的投影长度。而叉积生成的结果是一个垂直于原向量的向量,其长度等于两向量构成的平行四边形的面积,方向遵循右手定则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 向量的点积

点积是指两个维度相同的向量相乘,结果是对应坐标配对的乘积之和:
eg:
[12]∙[12]=1×1+2×3=7\left[\begin{array}{l} 1 \\ 2 \end{array}\right] \bullet\left[\begin{array}{l} 1 \\ 2 \end{array}\right]=1 \times 1+2 \times 3=7[12][12]=1×1+2×3=7

留意:

  • v⃗⋅w⃗=w⃗⋅v⃗\vec{v} \cdot \vec{w}=\vec{w} \cdot \vec{v}vw=wv
  • 向量方向相同时结果为正,
  • 向量方向相反时结果为负,
  • 向量方向垂直结果为0.

几何意义:点积 v⃗⋅w⃗\vec{v} \cdot \vec{w}vw 的结果是向量 w⃗\vec{w}wv⃗\vec{v}v 上的正交投影长度乘以 v⃗\vec{v}v 的长度;本质是先投影再缩放.

2. 向量的叉积

几何意义:两个向量叉积的结果是第三个向量,结果向量垂直于原向量组成的平行四边形,长度等于平行四边形的面积,方向取决于原向量的相对位置,可以使用右手定则判断。
叉积 v⃗×w⃗\vec{v} \times \vec{w}v×w 等同于寻找一个向量 p⃗\vec{p}p (更为熟知的叫法是法向量),满足下面的等式:
[p1p2p3]⋅[xyz]=det⁡([xv1w1yv2w2zv3w3])\begin{array}{l} \left[\begin{array}{l} p_{1} \\ p_{2} \\ p_{3} \end{array}\right] \cdot\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\operatorname{det}\left(\left[\begin{array}{lll} x & v_{1} & w_{1} \\ y & v_{2} & w_{2} \\ z & v_{3} & w_{3} \end{array}\right]\right)\end{array} p1p2p3xyz=detxyzv1v2v3w1w2w3

⇓\Downarrow

[v1v2v3]×[w1w2w3]=det⁡([i⃗v1v1j⃗v2w2k⃗v3w3])=[v2w3−v3w2v3w1−v1w3v1w2−v2w1]\left[\begin{array}{l} v_{1} \\ v_{2} \\ v_{3} \end{array}\right] \times\left[\begin{array}{l} w_{1} \\ w_{2} \\ w_{3} \end{array}\right]=\operatorname{det}\left(\left[\begin{array}{ccc} \vec{i} & v_{1} & v_{1} \\ \vec{j} & v_{2} & w_{2} \\ \vec{k} & v_{3} & w_{3} \end{array}\right]\right)=\left[\begin{array}{l} v_{2} w_{3}-v_{3} w_{2} \\ v_{3} w_{1}-v_{1} w_{3} \\ v_{1} w_{2}-v_{2} w_{1} \end{array}\right]v1v2v3×w1w2w3=detijkv1v2v3v1w2w3=v2w3v3w2v3w1v1w3v1w2v2w1
留意:

  • v⃗⊥v⃗×w⃗,w⃗⊥v⃗×w⃗\vec{v} \perp \vec{v} \times \vec{w}, \quad \vec{w} \perp \vec{v} \times \vec{w}vv×w,wv×w
  • v⃗×v⃗=0→,0→×v⃗=0→\vec{v} \times \vec{v}=\overrightarrow{0}, \quad \overrightarrow{0} \times \vec{v}=\overrightarrow{0}v×v=0,0×v=0
  • v⃗//w⃗⇔v⃗×w⃗=0→\vec{v} / / \vec{w} \Leftrightarrow \vec{v} \times \vec{w}=\overrightarrow{0}v//wv×w=0
  • v⃗×w⃗=−w⃗×v⃗\vec{v} \times \vec{w}=-\vec{w} \times \vec{v}v×w=w×v
  • (λv⃗)×w⃗=λ(v⃗×w⃗)(\lambda \vec{v}) \times \vec{w}=\lambda(\vec{v} \times \vec{w})(λv)×w=λ(v×w)
  • (v⃗+w⃗)×l⃗=v⃗×l⃗+w⃗×l⃗(\vec{v}+\vec{w}) \times \vec{l}=\vec{v} \times \vec{l}+\vec{w} \times \vec{l}(v+w)×l=v×l+w×l

若v⃗×w⃗>0,则v⃗在w⃗顺时针方向若 \vec{v} \times \vec{w}>0 , 则 \vec{v} 在 \vec{w} 顺时针方向v×w>0,vw顺时针方向

若v⃗×w⃗<0,则v⃗在w⃗逆时针方向若 \vec{v} \times \vec{w}<0 , 则 \vec{v} 在 \vec{w} 逆时针方向v×w<0,vw逆时针方向

若v⃗×w⃗>0,则v⃗与w⃗同线,同向或反向若 \vec{v} \times \vec{w}>0 , 则 \vec{v} 与 \vec{w} 同线,同向或反向v×w>0,vw同线,同向或反向

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值