AFF-注意力特征融合 | Attentional Feature Fusion

感觉实验做的也太少了…很水
https://arxiv.org/pdf/2009.14082.pdf
https://github.com/YimianDai/open-aff

在这里插入图片描述

Abstract:

特征融合是来自不同层或分支的特征的组合,是现代网络体系结构中无所不在的一部分。它通常通过简单的操作(例如求和或拼接)来实现,但这可能不是最佳选择。在这项工作中,我们提出了一个统一的通用方案,即注意力特征融合,该方案适用于大多数常见场景,包括短跳跃和长跳跃连接以及在Inception层中引起的特征融合。为了更好地融合语义和尺度不一致的特征,我们提出了多尺度通道注意力模块,该模块解决了融合不同尺度给出的特征时出现的问题。我们还证明了特征图的初始集成可能会成为瓶颈,并且可以通过添加另一个注意力级别(称为迭代关注特征融合)来缓解此问题。在更少参数或网络层的情况下,我们的模型在CIFAR-100和ImageNet数据集上均优于最新的网络,这表明与特征直接融合相比,用于特征融合的更复杂的注意力机制具有持续产生更好结果的巨大潜力。

MS-CAM:

在这里插入图片描述

多尺度通道注意力模块,

### 关于 AFF 注意力特征融合模块的原论文 AFF(Attention Feature Fusion Module)是一种用于多模态数据处理的技术,其核心在于通过注意力机制实现不同特征之间的有效融合。虽然具体提到的 AFF 可能因研究领域而异,但在学术界中,类似的注意力融合方法通常被应用于计算机视觉、自然语言处理以及跨模态学习等领域。 在教育机构网站上寻找原始论文可以通过以下方式定位相关内容: 1. **搜索引擎限定查询** 使用 Google Scholar 或其他学术搜索引擎时,可以加上 `site:edu` 来限定搜索范围至教育机构的官方网站或出版物。例如,在搜索框输入如下关键词组合: ``` "attention feature fusion" AFF site:edu ``` 2. **可能的研究方向** 如果 AFF 是一种特定的模型,则它很可能来源于以下几个热门研究主题之一: - 多模态学习中的特征融合技术[^1]。 - 计算机视觉中的目标检测与分割任务[^2]。 - 自然语言处理中的序列到序列建模[^3]。 以下是基于假设的一个简单 Python 实现示例,展示如何模拟一个基础的注意力特征融合过程: ```python import torch import torch.nn as nn class AFFModule(nn.Module): def __init__(self, channels, reduction=16): super(AFFModule, self).__init__() self.attention = nn.Sequential( nn.Conv2d(channels, channels // reduction, kernel_size=1), nn.ReLU(), nn.Conv2d(channels // reduction, channels, kernel_size=1), nn.Sigmoid() ) def forward(self, x1, x2): fused_feature = torch.cat([x1, x2], dim=1) attention_weights = self.attention(fused_feature) output = fused_feature * attention_weights return output ``` 此代码片段定义了一个简单的 AFF 模块,其中利用卷积层计算注意力权重并将其应用到融合后的特征图上[^4]。 #### 学术资源推荐 对于更深入的理解,建议访问知名高校或研究所发布的公开资料库,比如 MIT 的 CSAIL、Stanford AI Lab 等。这些地方经常发布最新的研究成果和技术文档。 ---
评论 30
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值