说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后关注获取。
1.项目背景
在当今的数据驱动型社会中,机器学习技术被广泛应用于各个行业以解决复杂的预测和分类问题。LightGBM作为一种高效的梯度提升框架,因其快速的学习速度和较低的内存使用率而受到众多数据科学家的喜爱。然而,如同其他机器学习模型一样,LightGBM的表现高度依赖于其超参数的选择。手动调整这些超参数不仅耗时费力,而且难以找到全局最优解。因此,采用自动化的优化方法来寻找最佳超参数组合显得尤为重要。
NOA星雀优化算法(Novel Astral Optimization Algorithm, NOA)是一种新兴的元启发式优化算法,它模仿了星雀在宇宙中寻找最亮星星的过程,通过模拟这种自然现象来解决复杂的优化问题。与传统的优化方法相比,NOA算法具有更强的全局搜索能力和更快的收敛速度。将NOA算法应用到LightGBM模型的超参数优化中,不仅可以提高模型的预测性能,还能有效减少人工调参的工作量。此外,NOA算法的引入为机器学习模型优化提供了一种新的思路和方法。
本项目旨在探讨如何利用NOA星雀优化算法对LightGBM回归模型进行超参数优化,以实现更精准的预测结果。通过对真实世界数据集的应用案例研究,我们希望能够展示NOA算法在提升LightGBM模型表现方面的潜力,并为从事相关领域工作的研究人员和工程师提供有价值的参考。同时,该项目还将探索如何通过Python编程语言实现这一过程,包括数据预处理、模型训练、超参数优化以及结果分析等环节,为读者提供一个完整的实践指南。
本项目通过Python实现NOA星雀优化算法优化LightGBM回归模型项目实战。
2.数据获取
本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:
编号 | 变量名称 | 描述 |
1 | x1 | |
2 | x2 | |
3 | x3 | |
4 | x4 | |
5 | x5 | |
6 | x6 | |
7 | x7 | |
8 | x8 | |
9 | x9 | |
10 | x10 | |
11 | y | 因变量 |
数据详情如下(部分展示):
3.数据预处理
3.1 用Pandas工具查看数据
使用Pandas工具的head()方法查看前五行数据:
关键代码:
3.2数据缺失查看
使用Pandas工具的info()方法查看数据信息:
从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。
关键代码:
3.3数据描述性统计
通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。
关键代码如下:
4.探索性数据分析
4.1 y变量分布直方图
用Matplotlib工具的hist()方法绘制直方图:
4.2 相关性分析
从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。
5.特征工程
5.1 建立特征数据和标签数据
关键代码如下:
5.2 数据集拆分
通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:
6.构建NOA星雀优化算法优化LightGBM回归模型
主要使用通过NOA星雀优化算法优化LightGBM回归模型,用于目标回归。
6.1 NOA星雀优化算法寻找最优参数值
最优参数值:
6.2 最优参数构建模型
编号 | 模型名称 | 参数 |
1 | LightGBM回归模型 | n_estimators=best_n_estimators |
2 | max_depth=best_max_depth | |
3 | learning_rate=best_learning_rate |
7.模型评估
7.1评估指标及结果
评估指标主要包括R方、均方误差、解释性方差、绝对误差等等。
模型名称 | 指标名称 | 指标值 |
测试集 | ||
LightGBM回归模型 | R方 | 0.9276 |
均方误差 | 3286.0646 | |
解释方差分 | 0.9278 | |
绝对误差 | 43.0334 |
从上表可以看出,R方分值为0.9276,说明模型效果比较好。
关键代码如下:
7.2 真实值与预测值对比图
从上图可以看出真实值和预测值波动基本一致,模型效果良好。
8.结论与展望
综上所述,本文采用了Python实现NOA星雀优化算法优化LightGBM回归算法来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。