本文主要参考自 OpenCV官方文档
一、傅里叶变换
傅立叶变换用于分析各种滤波器的频率特性。对于图像,使用 2D离散傅里叶变换(DFT) 查找频域。一种称为 快速傅立叶变换(FFT) 的快速算法用于DFT的计算。
对于正弦信号
x
(
t
)
=
A
sin
(
2
π
f
t
)
x(t) = A \sin(2 \pi ft)
x(t)=Asin(2πft) 我们可以说f是信号的频率,如果采用其频域,则可以看到
f
f
f
的尖峰。如果对信号进行采样以形成离散信号,我们将获得相同的频域,但是在
[
−
π
,
π
]
[−π,π]
[−π,π] 或
[
0
,
2
π
]
[0,2π]
[0,2π] 范围内(对于N点DFT为
[
0
,
N
]
[0,N]
[0,N])是周期性的。可以将图像视为在两个方向上采样的信号。因此,在 X 和 Y 方向都进行傅立叶变换,可以得到图像的频率表示。
更直观地说,对于正弦信号,如果幅度在短时间内变化如此之快,则可以说它是高频信号。如果变化缓慢,则为低频信号。您可以将相同的想法扩展到图像。图像中的振幅在哪里急剧变化?在边缘点或噪声。因此,可以说边缘和噪声是图像中的高频内容。如果幅度没有太大变化,则它是低频分量。
-
Numpy中的傅里叶变换(快速傅里叶变换)
① np.fft.fft2() 为我们提供了频率转换,它的第一个参数是输入图像,即灰度图像。第二个参数是可选的,它决定输出数组的大小。
② 获得结果,零频率分量(DC分量) 将位于左上角。如果要使其居中,则需要在两个方向上将结果都移动 N 2 \frac{N}{2} 2N 。只需通过函数 np.fft.fftshift() 即可完成。找到频率变换后,就可以找到幅度谱。
③ 频率变换现在,可以在频域中进行一些操作,例如使用高通滤波和重建图像,即找到逆DFT。为此,只需用一个矩形窗口遮罩即可消除低频。然后,使用 np.fft.ifftshift() 进行反向移位,以使 DC分量 再次出现在左上角。然后使用 np.ifft2() 函数找到 逆FFT。同样,结果将是一个复数。您可以采用其绝对值。
import numpy as np import cv2 import matplotlib.pyplot as plt img = cv2.imread("../../Resources/Maserati.jpg", 0) # 1.FFT快速傅里叶变换:空域->频域 ft = np.fft.fft2(img) # 2.中心化:将低频信号移动到图像中心 f_shift = np.fft.fftshift(ft) print(np.min(np.abs(f_shift))) # 绝对最低频率信号 print(np.max(f_shift), np.min(f_shift)) # 最高频率信号,最低频率信号 # 获取振幅谱,np.log()将其值压缩在[0, 255]之间 magnitude_spectrum = np.log(np.abs(f_shift)) print(np.max(magnitude_spectrum), np.min(magnitude_spectrum)) # 3.采用高通滤波进行 去低频、保高频操作 row, col = img.shape f_shift[row // 2 - 30:row // 2 + 30, col // 2 - 30:col // 2 + 30] = 0 # 4.去中心化:将剩余的低频和高频的位置还原 ft_shift = np.fft.ifftshift(f_shift) # 5.逆傅里叶变换:频域->空域 ft_ = np.fft.ifft2(ft_shift) # 6.二维向量取模(幅值) img_back = np.abs(ft_) # 绘图 titles = ['Image', 'Magnitude Spectrum', 'Image after HPF', 'Result in JET'] images = [img, magnitude_spectrum, img_back, img_back] for i in range(len(images)): plt.subplot(2, 2, i + 1) if i == 3: plt.imshow(images[i]) else: plt.imshow(images[i], cmap='gray') plt.title(titles[i]) plt.xticks([]) plt.yticks([]) plt.show()
实现效果图
-
OpenCV中的傅里叶变换(离散傅里叶变换)
这次我们将删除图像中的高频内容,即我们将LPF应用到图像中,它实际上模糊了图像。为此,我们首先创建一个高值 1 在低频部分,即我们过滤低频内容,0 在高频区。
import cv2 import numpy as np import matplotlib.pyplot as plt img = cv2.imread("../../Resources/Maserati.jpg", 0) # 1.DFT离散傅里叶变换:空域->时域 dft = cv2.dft(np.float32(img), flags=cv2.DFT_COMPLEX_OUTPUT) # src为灰度图,并且是numpy.float32类型 print(dft.shape) # 2.中心化:将低频移到中心 dft_shift = np.fft.fftshift(dft) # 获取振幅谱 # cv2.magnitude(x, y) 将sqrt(x^2 + y^2) 计算矩阵维度的平方根 magnitude_spectrum = np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1])) print(np.max(magnitude_spectrum), np.min(magnitude_spectrum)) # 3.低通滤波,去高频、保低频 row, col = img.shape mask = np.zeros((row, col, 2), dtype=np.uint8) mask[row // 2 - 30:row // 2 + 30, col // 2 - 30:col // 2 + 30] = 1 dft_shift = dft_shift * mask # 4.去中心化:还原低频和高频位置 i_dft_shift = np.fft.ifftshift(dft_shift) # 5.逆傅里叶变换:频域->时域 i_dft = cv2.idft(i_dft_shift) # 6.二维向量取模(幅值) img_back = cv2.magnitude(i_dft[:, :, 0], i_dft[:, :, 1]) # 绘图 titles = ['Image', 'Magnitude Spectrum', 'Image after HPF', 'Result in JET'] images = [img, magnitude_spectrum, img_back, img_back] for i in range(len(images)): plt.subplot(2, 2, i + 1) if i == 3: plt.imshow(images[i]) else: plt.imshow(images[i], cmap='gray') plt.title(titles[i]) plt.xticks([]) plt.yticks([]) plt.show()
实现效果图
二、霍夫变换
-
霍夫线变换
一条线可以表示为 y = m x + c y=mx+c y=mx+c 或以参数形式表示为 ρ = x c o s θ + y s i n θ ρ=xcosθ+ysinθ ρ=xcosθ+ysinθ,其中 ρ ρ ρ 是从原点到该线的垂直距离,而 θ θ θ 是由该垂直线和水平轴形成的角度以逆时针方向测量(该方向随您如何表示坐标系而变化)
任何一条线都可以用(ρ,θ)
这两个术语表示。1)先定义一个累加器,
(ρ,θ)
对应直线,ρ
和θ
都分别依次增大(根据精度),计算每对(ρ,θ)
的投票数。
其中,ρ
以像素为单位,θ
以弧度为单位。rho
和theta
是ρ
和θ
的精度。2)然后,根据
threshold
(阈值,最低投票数)来判断是否归为一条直线lines = cv2.HoughLines(image, rho, theta, threshold)
参数:
image
: 单通道的二进制图像rho
:(ρ,θ)
中ρ
的精度theta
:(ρ,θ)
中θ
的精度threshold
: 阈值,(ρ,θ)
对应的最低投票数 >= threshold被检测为一条线import cv2 import numpy as np img = cv2.imread("../../Resources/checkerboard.jpg") img = cv2.GaussianBlur(img, (3, 3), 50) # 1.检测轮廓 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray, 100, 150) # 2.投射到Hough空间进行形状检测 lines = cv2.HoughLines(edges, 1, np.pi / 100, 100) # 隔1个长度单位的采样,角度 # 画线 for line in lines: rho, theta = line[0] a = np.cos(theta) b = np.sin(theta) x0 = rho * a y0 = rho * b x1 = int(x0 - 1000 * b) # 直线起点横坐标 y1 = int(y0 - 1000 * a) # 直线起点纵坐标 x2 = int(x0 + 1000 * b) # 直线终点横坐标 y2 = int(y0 + 1000 * a) # 直线终点纵坐标 cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2) cv2.imshow("img", img) cv2.waitKey(0)
实现效果图如下
-
霍夫圆变换
圆在数学上表示为
(x−xcenter)2+(y−ycenter)2=r2
,其中(xcenter,ycenter)
是圆的中心,r
是圆的半径。从等式中,我们可以看到我们有3个参数,因此我们需要3D累加器进行霍夫变换,这将非常低效。circles = cv2.HoughCircles(image, method, dp, minDist, circles=None, param1=None, param2=None, minRadius=None, maxRadius=None)
参数:
method
:定义检测图像中圆的方法。目前唯一实现的方法是HOUGH_GRADIENT
。dp
:累加器分辨率与图像分辨率的反比。dp=1
,则累加器与输入图像具有相同的分辨率;dp=2
,累加器有一半的宽度和高度。minDist
:该参数是让算法能明显区分的两个不同圆之间的最小距离。param1
:用于Canny
的边缘阀值上限,下限被置为上限的一半。param2
:HOUGH_GRADIENT
方法的累加器阈值(最低投票数)。阈值越小,检测到的圈子越多。minRadius
:最小圆半径。maxRadius
:最大圆半径。import cv2 import numpy as np img = cv2.imread("../../Resources/shapes.jpg") # 1.检测轮廓 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray, 50, 100) # 2.投射到Hough空间进行形状检测 circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 100, param1=10, param2=20, minRadius=20, maxRadius=500) # 画圆 if circles is not None: circle = np.int_(np.around(circles)) print(circle[0, :]) for i in circle[0, :]: cv2.circle(img, (i[0], i[1]), i[2], (0, 255, 0), 2) cv2.imshow('edges', edges) cv2.imshow('img', img) cv2.waitKey(0) cv2.destroyAllWindows()
实现效果如下图
三、分水岭算法
- 图像分割
实现的效果图如下import cv2 import numpy as np import matplotlib.pyplot as plt img = cv2.imread("../../Resources/water_coins.jpg") gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 二值化 ret_0, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU) # cv2.imshow("thresh", thresh) # cv2.waitKey(0) # 去噪 kernel = np.ones((3, 3), np.uint8) opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2) # 确定背景区域 sure_bg = cv2.dilate(opening, kernel, iterations=3) # 寻找前景区域 dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 5) ret_1, sure_fg = cv2.threshold(dist_transform, 0.7 * dist_transform.max(), 255, 0) # 找未知区域 sure_fg = np.uint8(sure_fg) unknown = cv2.subtract(sure_bg, sure_fg) # cv2.imshow('bg', sure_bg) # cv2.imshow('fg', sure_fg) # cv2.imshow('unknown', unknown) # cv2.waitKey(0) # 类别标记 ret_2, markers = cv2.connectedComponents(sure_fg) # 为所有标记加1,保证背景是0而不是1 markers = markers + 1 # 让所有未知区域为0 markers[unknown == 255] = 0 # 分水岭算法 markers = cv2.watershed(img, markers) img[markers == -1] = (0, 0, 255) cv2.imshow('result', img) cv2.waitKey(0) cv2.destroyAllWindows()