【OpenCV】Mango的OpenCV学习笔记【五】

本文参考OpenCV官方文档,介绍了三种图像处理算法。傅里叶变换用于分析图像频率特性,可在频域操作并重建图像;霍夫变换包括线变换和圆变换,通过累加器投票判断直线和圆;分水岭算法用于图像分割。文中还给出了各算法的实现效果图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文主要参考自 OpenCV官方文档

一、傅里叶变换

傅立叶变换用于分析各种滤波器的频率特性。对于图像,使用 2D离散傅里叶变换(DFT) 查找频域。一种称为 快速傅立叶变换(FFT) 的快速算法用于DFT的计算。

对于正弦信号 x ( t ) = A sin ⁡ ( 2 π f t ) x(t) = A \sin(2 \pi ft) x(t)=Asin(2πft) 我们可以说f是信号的频率,如果采用其频域,则可以看到 f f f
的尖峰。如果对信号进行采样以形成离散信号,我们将获得相同的频域,但是在 [ − π , π ] [−π,π] [ππ] [ 0 , 2 π ] [0,2π] [0,2π] 范围内(对于N点DFT为 [ 0 , N ] [0,N] [0N])是周期性的。可以将图像视为在两个方向上采样的信号。因此,在 X 和 Y 方向都进行傅立叶变换,可以得到图像的频率表示。

更直观地说,对于正弦信号,如果幅度在短时间内变化如此之快,则可以说它是高频信号。如果变化缓慢,则为低频信号。您可以将相同的想法扩展到图像。图像中的振幅在哪里急剧变化?在边缘点或噪声。因此,可以说边缘和噪声是图像中的高频内容。如果幅度没有太大变化,则它是低频分量。

  1. Numpy中的傅里叶变换(快速傅里叶变换)

    np.fft.fft2() 为我们提供了频率转换,它的第一个参数是输入图像,即灰度图像。第二个参数是可选的,它决定输出数组的大小。

    ② 获得结果,零频率分量(DC分量) 将位于左上角。如果要使其居中,则需要在两个方向上将结果都移动 N 2 \frac{N}{2} 2N 。只需通过函数 np.fft.fftshift() 即可完成。找到频率变换后,就可以找到幅度谱。

    ③ 频率变换现在,可以在频域中进行一些操作,例如使用高通滤波和重建图像,即找到逆DFT。为此,只需用一个矩形窗口遮罩即可消除低频。然后,使用 np.fft.ifftshift() 进行反向移位,以使 DC分量 再次出现在左上角。然后使用 np.ifft2() 函数找到 逆FFT。同样,结果将是一个复数。您可以采用其绝对值。

    import numpy as np
    import cv2
    import matplotlib.pyplot as plt
    
    img = cv2.imread("../../Resources/Maserati.jpg", 0)
    
    # 1.FFT快速傅里叶变换:空域->频域
    ft = np.fft.fft2(img)
    
    # 2.中心化:将低频信号移动到图像中心
    f_shift = np.fft.fftshift(ft)
    print(np.min(np.abs(f_shift)))  # 绝对最低频率信号
    print(np.max(f_shift), np.min(f_shift))  # 最高频率信号,最低频率信号
    
    # 获取振幅谱,np.log()将其值压缩在[0, 255]之间
    magnitude_spectrum = np.log(np.abs(f_shift))
    print(np.max(magnitude_spectrum), np.min(magnitude_spectrum))
    
    # 3.采用高通滤波进行 去低频、保高频操作
    row, col = img.shape
    f_shift[row // 2 - 30:row // 2 + 30, col // 2 - 30:col // 2 + 30] = 0
    
    # 4.去中心化:将剩余的低频和高频的位置还原
    ft_shift = np.fft.ifftshift(f_shift)
    
    # 5.逆傅里叶变换:频域->空域
    ft_ = np.fft.ifft2(ft_shift)
    
    # 6.二维向量取模(幅值)
    img_back = np.abs(ft_)
    
    # 绘图
    titles = ['Image', 'Magnitude Spectrum', 'Image after HPF', 'Result in JET']
    images = [img, magnitude_spectrum, img_back, img_back]
    
    for i in range(len(images)):
        plt.subplot(2, 2, i + 1)
        if i == 3:
            plt.imshow(images[i])
        else:
            plt.imshow(images[i], cmap='gray')
        plt.title(titles[i])
        plt.xticks([])
        plt.yticks([])
    plt.show()
    

    实现效果图在这里插入图片描述

  2. OpenCV中的傅里叶变换(离散傅里叶变换)

    这次我们将删除图像中的高频内容,即我们将LPF应用到图像中,它实际上模糊了图像。为此,我们首先创建一个高值 1 在低频部分,即我们过滤低频内容,0 在高频区。

    import cv2
    import numpy as np
    import matplotlib.pyplot as plt
    
    img = cv2.imread("../../Resources/Maserati.jpg", 0)
    
    # 1.DFT离散傅里叶变换:空域->时域
    dft = cv2.dft(np.float32(img), flags=cv2.DFT_COMPLEX_OUTPUT)  # src为灰度图,并且是numpy.float32类型
    print(dft.shape)
    
    # 2.中心化:将低频移到中心
    dft_shift = np.fft.fftshift(dft)
    
    # 获取振幅谱
    # cv2.magnitude(x, y) 将sqrt(x^2 + y^2) 计算矩阵维度的平方根
    magnitude_spectrum = np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1]))
    print(np.max(magnitude_spectrum), np.min(magnitude_spectrum))
    
    # 3.低通滤波,去高频、保低频
    row, col = img.shape
    mask = np.zeros((row, col, 2), dtype=np.uint8)
    mask[row // 2 - 30:row // 2 + 30, col // 2 - 30:col // 2 + 30] = 1
    dft_shift = dft_shift * mask
    
    # 4.去中心化:还原低频和高频位置
    i_dft_shift = np.fft.ifftshift(dft_shift)
    
    # 5.逆傅里叶变换:频域->时域
    i_dft = cv2.idft(i_dft_shift)
    
    # 6.二维向量取模(幅值)
    img_back = cv2.magnitude(i_dft[:, :, 0], i_dft[:, :, 1])
    
    # 绘图
    titles = ['Image', 'Magnitude Spectrum', 'Image after HPF', 'Result in JET']
    images = [img, magnitude_spectrum, img_back, img_back]
    
    for i in range(len(images)):
        plt.subplot(2, 2, i + 1)
        if i == 3:
            plt.imshow(images[i])
        else:
            plt.imshow(images[i], cmap='gray')
        plt.title(titles[i])
        plt.xticks([])
        plt.yticks([])
    plt.show()
    

    实现效果图在这里插入图片描述

二、霍夫变换

  1. 霍夫线变换

    一条线可以表示为 y = m x + c y=mx+c y=mx+c 或以参数形式表示为 ρ = x c o s θ + y s i n θ ρ=xcosθ+ysinθ ρ=xcosθ+ysinθ,其中 ρ ρ ρ 是从原点到该线的垂直距离,而 θ θ θ 是由该垂直线和水平轴形成的角度以逆时针方向测量(该方向随您如何表示坐标系而变化)
    在这里插入图片描述
    任何一条线都可以用 (ρ,θ) 这两个术语表示。

    1)先定义一个累加器,(ρ,θ) 对应直线,ρθ 都分别依次增大(根据精度),计算每对 (ρ,θ) 的投票数。
    其中,ρ 以像素为单位,θ 以弧度为单位。rhothetaρθ 的精度。

    2)然后,根据 threshold (阈值,最低投票数)来判断是否归为一条直线

    lines = cv2.HoughLines(image, rho, theta, threshold)

    参数:

    image: 单通道的二进制图像

    rho: (ρ,θ)ρ 的精度

    theta: (ρ,θ)θ 的精度

    threshold: 阈值,(ρ,θ) 对应的最低投票数 >= threshold被检测为一条线

    import cv2
    import numpy as np
    
    img = cv2.imread("../../Resources/checkerboard.jpg")
    img = cv2.GaussianBlur(img, (3, 3), 50)
    
    # 1.检测轮廓
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    edges = cv2.Canny(gray, 100, 150)
    
    # 2.投射到Hough空间进行形状检测
    lines = cv2.HoughLines(edges, 1, np.pi / 100, 100)  # 隔1个长度单位的采样,角度
    
    # 画线
    for line in lines:
        rho, theta = line[0]
        a = np.cos(theta)
        b = np.sin(theta)
        x0 = rho * a
        y0 = rho * b
    
        x1 = int(x0 - 1000 * b)  # 直线起点横坐标
        y1 = int(y0 - 1000 * a)  # 直线起点纵坐标
        x2 = int(x0 + 1000 * b)  # 直线终点横坐标
        y2 = int(y0 + 1000 * a)  # 直线终点纵坐标
    
        cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2)
    
    cv2.imshow("img", img)
    cv2.waitKey(0)
    

    实现效果图如下在这里插入图片描述

  2. 霍夫圆变换

    圆在数学上表示为 (x−xcenter)2+(y−ycenter)2=r2,其中 (xcenter,ycenter) 是圆的中心,r 是圆的半径。从等式中,我们可以看到我们有3个参数,因此我们需要3D累加器进行霍夫变换,这将非常低效。

    circles = cv2.HoughCircles(image, method, dp, minDist, circles=None, param1=None, param2=None, minRadius=None, maxRadius=None)

    参数:
    method:定义检测图像中圆的方法。目前唯一实现的方法是HOUGH_GRADIENT

    dp:累加器分辨率与图像分辨率的反比。

    dp=1,则累加器与输入图像具有相同的分辨率;dp=2,累加器有一半的宽度和高度。

    minDist:该参数是让算法能明显区分的两个不同圆之间的最小距离。

    param1 :用于 Canny 的边缘阀值上限,下限被置为上限的一半。

    param2HOUGH_GRADIENT 方法的累加器阈值(最低投票数)。阈值越小,检测到的圈子越多。

    minRadius :最小圆半径。

    maxRadius:最大圆半径。

    import cv2
    import numpy as np
    
    img = cv2.imread("../../Resources/shapes.jpg")
    
    # 1.检测轮廓
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    edges = cv2.Canny(gray, 50, 100)
    
    # 2.投射到Hough空间进行形状检测
    circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 100,
                               param1=10, param2=20, minRadius=20, maxRadius=500)
    
    # 画圆
    if circles is not None:
        circle = np.int_(np.around(circles))
        print(circle[0, :])
        for i in circle[0, :]:
            cv2.circle(img, (i[0], i[1]), i[2], (0, 255, 0), 2)
    
    cv2.imshow('edges', edges)
    cv2.imshow('img', img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    

    实现效果如下图在这里插入图片描述

三、分水岭算法

  1. 图像分割
    import cv2
    import numpy as np
    import matplotlib.pyplot as plt
    
    img = cv2.imread("../../Resources/water_coins.jpg")
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    
    # 二值化
    ret_0, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
    # cv2.imshow("thresh", thresh)
    # cv2.waitKey(0)
    
    # 去噪
    kernel = np.ones((3, 3), np.uint8)
    opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2)
    
    # 确定背景区域
    sure_bg = cv2.dilate(opening, kernel, iterations=3)
    
    # 寻找前景区域
    dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)
    ret_1, sure_fg = cv2.threshold(dist_transform, 0.7 * dist_transform.max(), 255, 0)
    
    # 找未知区域
    sure_fg = np.uint8(sure_fg)
    unknown = cv2.subtract(sure_bg, sure_fg)
    
    # cv2.imshow('bg', sure_bg)
    # cv2.imshow('fg', sure_fg)
    # cv2.imshow('unknown', unknown)
    # cv2.waitKey(0)
    
    # 类别标记
    ret_2, markers = cv2.connectedComponents(sure_fg)
    
    # 为所有标记加1,保证背景是0而不是1
    markers = markers + 1
    
    # 让所有未知区域为0
    markers[unknown == 255] = 0
    
    # 分水岭算法
    markers = cv2.watershed(img, markers)
    img[markers == -1] = (0, 0, 255)
    
    cv2.imshow('result', img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    
    实现的效果图如下在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值