DV实验里面基于环境类测试的各种高温运行,低温运行或者湿度,温度变化的各种耐久测试。通过各种900个循环,1000小时,2000小时的高温或者其他条件来评估产品的设计寿命是否能够达到10年20万公里或者15年30万公里这样。这些其实都是加速试验
加速试验是指在保证不改变产品失效机理的前提下,通过强化实验条件,使被测试产品加速失效,在较短的时间内获得必要信息,来评估产品在正常条件下的可靠性或寿命指标。
但是目前我们所用到的各种DV测试条件,都是基于传统车的ECU运行条件和时间来进行测试,例如通常我们评估一个车10年或20W公里的使用寿命,大概的评估场景就是驾驶10年的时间每天都开,每天开两次,那这个ECU的循环使用次数就是10*365*2=7300次。但这只是评估场景,真实的使用情况可能是卖一台车在家里,一个月就周末开开,或者还有一些情况时跑出租车,司机分两班倒的开,可能每天开车的时间在20个小时以上。这些都怎么来推算呢?
那就从加速老化试验最早的几个概念开始说起。
一 可靠性要求介绍
可靠性只是产品在规定时间内和规定条件下,完成规定功能的能力。对电子电器产品而言,产品的可靠性越高,其无故障工作的时间就越长。
寿命失效时符合Weibull分布,他的可靠性公式是这样的。
其中
R(t) 功能定义时间(循环数/操作数)正常工作的概率;
PA 是置信度(假设);
β 是Weibull因子;
n 是DUT的数量;
t 是测试持续时间(时间数或操作周期);
T 是指定的使用寿命(时间或周期或操作数)。
对于置信度这玩意,又得回头看看统计学的知识,以我们的正态分布为例,在一个标准差之内,是有68%的样本落在这个区间的,到3个标准差的时候,就有999.7%的样本落在这个区间内。这两种情况下的置信度分别就是0.68和0.997。
二 高温运行耐久试验
通常情况下对于ECU来说,都是需要做高温运行耐久试验的, 目的是通过高温加速模拟ECU在日常环境下的工作状态,来考察ECU是否能够耐受住高温导致的失效等潜在风险。
一般情况下高温运行耐久会分为500h,1000h,2000h这些测试条件,那究竟这些时间是怎么得到的?
我找到一篇论文,里面有介绍Arrhenius(阿伦纽斯)模型,Arrhenius模型适用于基于不同工作温度分布百分比的寿命加速测试,他的加速计算公式如下所示:
其中:
Jt,i——Arrhenius模型的加速因子;
Ea——激活能,这玩意是经验值来着,根据不同的失效机理,在0.2~1.2eV之间,通常计算的情况下取0.45eV;
k——玻尔兹曼常数
Ttest——测试温度,单位是℃,一般取被测样件的最高工作温度Tmax;
T feld,i——环境温度分布,单位是℃;
-273.15℃为绝对0度。
加速因子是基于各温度分布百分比加速因子的测试要求,它的计算公式是这样的:
其中:
Ttest——高温运行加速测试时间;
Tot——环境温度范围内的工作时间;
Pi——按照Tfeld,i环境工作温度分布百分比。
三 加速测试时间的具体计算方式
一般来说,我所参考的论文讲到上面那一章就结束了,大家也心满意足的知道大概是个怎么回事,不过对于我来说,就希望较真的来算一下是不是真的这样。然后搞个例子来试一下。
以一个放置在乘员舱且晒不到太阳的零部件为例,它的工作温度范围一般定义为-40℃~85℃。定义车辆的使用寿命为15年24万公里。Ea = 0.45eV,则根据大数据得到95%以下的车辆运行时间都会低于12000h,而各种工作温度所占的时间比例分别如下:
温度分布 |
占比 |
运行时间(总12000h) |
加速因子 |
等效85℃时的运行时间 |
-40℃ |
6% |
720h |
3483.61 |
0.29h |
23℃ |
20% |
2400h |
21.17 |
113.4h |
42℃ |
65% |
7800h |
7.31 |
1066.8h |
80℃ |
8% |
960h |
1.23 |
780.9h |
85℃ |
1% |
120h |
1 |
120h |
总运行时间 |
6216h |
对于以上加速因子的计算,因为公式比较复杂,就举一个最简单的例子,就是最高温度运行的时候,加速因子的公式,e的幂变成了0,因此加速因子是1。其余的加速因子可以自己代入进去计算一下。