高温运行耐久试验的运行时间

DV实验里面基于环境类测试的各种高温运行,低温运行或者湿度,温度变化的各种耐久测试。通过各种900个循环,1000小时,2000小时的高温或者其他条件来评估产品的设计寿命是否能够达到10年20万公里或者15年30万公里这样。这些其实都是加速试验

加速试验是指在保证不改变产品失效机理的前提下,通过强化实验条件,使被测试产品加速失效,在较短的时间内获得必要信息,来评估产品在正常条件下的可靠性或寿命指标。

但是目前我们所用到的各种DV测试条件,都是基于传统车的ECU运行条件和时间来进行测试,例如通常我们评估一个车10年或20W公里的使用寿命,大概的评估场景就是驾驶10年的时间每天都开,每天开两次,那这个ECU的循环使用次数就是10*365*2=7300次。但这只是评估场景,真实的使用情况可能是卖一台车在家里,一个月就周末开开,或者还有一些情况时跑出租车,司机分两班倒的开,可能每天开车的时间在20个小时以上。这些都怎么来推算呢?

那就从加速老化试验最早的几个概念开始说起。

一    可靠性要求介绍

可靠性只是产品在规定时间内和规定条件下,完成规定功能的能力。对电子电器产品而言,产品的可靠性越高,其无故障工作的时间就越长。

寿命失效时符合Weibull分布,他的可靠性公式是这样的。

其中

R(t) 功能定义时间(循环数/操作数)正常工作的概率;

PA 是置信度(假设);

β 是Weibull因子;

n 是DUT的数量;

t 是测试持续时间(时间数或操作周期);

T 是指定的使用寿命(时间或周期或操作数)。

对于置信度这玩意,又得回头看看统计学的知识,以我们的正态分布为例,在一个标准差之内,是有68%的样本落在这个区间的,到3个标准差的时候,就有999.7%的样本落在这个区间内。这两种情况下的置信度分别就是0.68和0.997。

二    高温运行耐久试验

通常情况下对于ECU来说,都是需要做高温运行耐久试验的, 目的是通过高温加速模拟ECU在日常环境下的工作状态,来考察ECU是否能够耐受住高温导致的失效等潜在风险。

一般情况下高温运行耐久会分为500h,1000h,2000h这些测试条件,那究竟这些时间是怎么得到的?

我找到一篇论文,里面有介绍Arrhenius(阿伦纽斯)模型,Arrhenius模型适用于基于不同工作温度分布百分比的寿命加速测试,他的加速计算公式如下所示:

其中:

Jt,i——Arrhenius模型的加速因子;

Ea——激活能,这玩意是经验值来着,根据不同的失效机理,在0.2~1.2eV之间,通常计算的情况下取0.45eV;

k——玻尔兹曼常数

Ttest——测试温度,单位是℃,一般取被测样件的最高工作温度Tmax;

T feld,i——环境温度分布,单位是℃;

-273.15℃为绝对0度。

加速因子是基于各温度分布百分比加速因子的测试要求,它的计算公式是这样的:

其中:

Ttest——高温运行加速测试时间;

Tot——环境温度范围内的工作时间;

Pi——按照Tfeld,i环境工作温度分布百分比。

三    加速测试时间的具体计算方式

一般来说,我所参考的论文讲到上面那一章就结束了,大家也心满意足的知道大概是个怎么回事,不过对于我来说,就希望较真的来算一下是不是真的这样。然后搞个例子来试一下。

以一个放置在乘员舱且晒不到太阳的零部件为例,它的工作温度范围一般定义为-40℃~85℃。定义车辆的使用寿命为15年24万公里。Ea = 0.45eV,则根据大数据得到95%以下的车辆运行时间都会低于12000h,而各种工作温度所占的时间比例分别如下:

温度分布

占比

运行时间(总12000h)

加速因子

等效85℃时的运行时间

-40℃

6%

720h

3483.61

0.29h

23℃

20%

2400h

21.17

113.4h

42℃

65%

7800h

7.31

1066.8h

80℃

8%

960h

1.23

780.9h

85℃

1%

120h

1

120h

总运行时间

6216h

对于以上加速因子的计算,因为公式比较复杂,就举一个最简单的例子,就是最高温度运行的时候,加速因子的公式,e的幂变成了0,因此加速因子是1。其余的加速因子可以自己代入进去计算一下。

资源下载链接为: https://pan.quark.cn/s/790f7ffa6527 在一维运动场景中,小车从初始位置 x=-100 出发,目标是到达 x=0 的位置,位置坐标 x 作为受控对象,通过增量式 PID 控制算法调节小车的运动状态。 系统采用的位置迭代公式为 x (k)=x (k-1)+v (k-1) dt,其中 dt 为仿真过程中的恒定时间间隔,因此速度 v 成为主要的调节量。通过调节速度参数,实现对小车位置的精确控制,最终生成位置 - 时间曲线的仿真结果。 在参数调节实验中,比例调节系数 Kp 的影响十分显著。从仿真曲线可以清晰观察到,当增大 Kp 值时,系统的响应速度明显加快,小车能够更快地收敛到目标位置,缩短了稳定时间。这表明比例调节在加快系统响应方面发挥着关键作用,适当增大比例系数可有效提升系统的动态性能。 积分调节系数 Ki 的调节则呈现出不同的特性。实验数据显示,当增大 Ki 值时,系统运动过程中的波动幅度明显增大,位置曲线出现更剧烈的震荡。但与此同时,小车位置的变化速率也有所提高,在动态调整过程中能够更快地接近目标值。这说明积分调节虽然会增加系统的波动性,但对加快位置变化过程具有积极作用。 通过一系列参数调试实验,清晰展现了比例系数和积分系数在增量式 PID 控制系统中的不同影响规律,为优化控制效果提供了直观的参考依据。合理匹配 Kp 和 Ki 参数,能够在保证系统稳定性的同时,兼顾响应速度和调节精度,实现小车位置的高效控制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值