HashMap常用方法与源码分析 JDK1.8

本文深入解析了HashMap的特点、存储结构、常用方法及源码分析。详细介绍了HashMap的线程安全性、运行效率、null值处理,以及其内部实现机制,包括哈希算法、链表与红黑树转换、扩容策略等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

HashMap特点

  • 线程不安全
  • 运行效率快
  • key或value都可以使用null
  • 存储结构:哈希表(JDK1.8后是数组+链表+红黑树)

HashMap常用方法

import java.util.HashMap;
import java.util.Map;

/**
 * @author 张宝旭
 */
public class HashMapTest {
    public static void main(String[] args) {
        HashMap<Integer, String> map = new HashMap<>();

        // 添加元素
        map.put(1, "北京");
        map.put(2, "上海");
        map.put(3, "沈阳");
        map.put(4, "东戴河");

        // keySet遍历
        for (Integer key : map.keySet()) {
            System.out.println(key + " : " + map.get(key));
        }
        // entry遍历
        for (Map.Entry<Integer, String> entry : map.entrySet()) {
            System.out.println(entry.getKey() + " : " + entry.getValue());
        }

        // 删除元素
        map.remove(4);
        // 获取map大小
        System.out.println("map大小: " + map.size());
        // 清空元素
        map.clear();
    }
}

HashMap源码分析

常量

初始容量(刚创建时没有大小,当添加第一个元素时,进行扩容到初始容量16)

static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

最大容量

static final int MAXIMUM_CAPACITY = 1 << 30;

加载因子:容量为16,阈值=加载因子×容量=0.75*16=12,当数组中元素增加到12的时候,会进行扩容

static final float DEFAULT_LOAD_FACTOR = 0.75f;

当数组的长度大于64时,且链表的长度大于8时,就会转换成红黑树

static final int MIN_TREEIFY_CAPACITY = 64;
static final int TREEIFY_THRESHOLD = 8;

当长度小于6的时候,就会由红黑树转换回数组+链表

static final int UNTREEIFY_THRESHOLD = 6;

map中的元素存储在Node类型的数组中

transient Node<K,V>[] table;

构造方法

public HashMap() {
    // 初始化加载因子 = 0.75
    this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}

put()方法

public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}

先查看putVal()方法中的第一个参数hash()方法

当key == null时,就返回0,否则令哈希值和哈希值向右移16位的值做异或(高16位与低16位异或)

用这个值来计算位置,目的:为了尽量减少散列冲突,避免链表太长

static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

异或操作分析

01101001 01101001 01101001 01101001     // 哈希值
00000000 00000000 01101001 01101001     // 无符号右移16位
-------------------------------------   // 异或
01101001 01101001 ...          // (高16位不变) 用这个值来计算位数,目的:为了尽量减少散列冲突,避免链表太长

分析putVal方法(核心方法)

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    // 将table赋值给tab,然后判断是否为null,为null说明map中没有元素
    // 元素存在table中,类型为Node类型,初始为空
    if ((tab = table) == null || (n = tab.length) == 0)
        // 进行扩容 resize()返回一个新的数组给tab
        n = (tab = resize()).length;
    // 主要计算位置:根据哈希值异或之后的结果与n-1进行与运算,计算位置,(下面有分析)
    if ((p = tab[i = (n - 1) & hash]) == null)
        // 计算完位置之后,如果对应位置为空,就新建一个节点,然后赋值
        tab[i] = newNode(hash, key, value, null);
    else {
        // 如果对应位置不为空,就是发生哈希冲突,然后下面解决冲突
        Node<K,V> e; K k;
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
            for (int binCount = 0; ; ++binCount) {
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        // 转换成红黑树
                        treeifyBin(tab, hash);
                    break;
                }
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    // 当增加一个元素之后的大小大于阈值的时候,就会再进行扩容
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}

resize()扩容方法

当数组为空的时候,第一次进行扩容

  • 设置容量 = 16,阈值 = 0.75*16 = 12
  • 创建一个长度为16的数组,并返回这个数组

当数组不为空的时候,再需要扩容时

  • 将原数组赋值到oldTab中
  • 容量×2,阈值×2
  • 创建一个新的数组,长度为16
final Node<K,V>[] resize() {
    // 创建一个Node类型的数组,将原数组table值赋值给oldTab
    Node<K,V>[] oldTab = table;
    // 如果oldTab为null,oldCap取值0,否则就取值原数组的长度
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    // 阈值,初始时为0
    int oldThr = threshold;
    int newCap, newThr = 0;
    // 当不是初始扩容时(第二次或以后需要扩容时)
    if (oldCap > 0) {
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        // 容量乘2
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            // 阈值乘2
            newThr = oldThr << 1; // double threshold
    }
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults
        // 初始容量16
        newCap = DEFAULT_INITIAL_CAPACITY;
        // 阈值 0.75*16 = 12
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
    // 创建一个新的数组,长度为16
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    // 当数组中有元素时,再进行扩容...
    if (oldTab != null) {
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

分析

根据哈希值异或之后的结果与n-1进行与运算,计算位置

if ((p = tab[i = (n - 1) & hash]) == null)

(此分析为第一次添加元素时的扩容计算位置,n=16)

01101001 01101001 01101001 01101001
                               1111
------------------------------------- // 与运算
00000000 00000000 00000000 00001001   // 结果为0-15,在数组长度的范围内

为什么每次扩容2倍?

01101001 01101001 01101001 01101001
                               1111
    // 当从16扩容到32时,也就从n-1=31,为
                              11111
    // 多出来的那个最前面的1,和上面对应位的值相与,如果上面的对应位是0,则结果为0 1001,如果上面对应位是1,则结果为1 1001
    // 后面四位不变,而前面的一位有一半的概率为1,一半的概率为0,所以重新计算的值,有一半的概率不变,就是有一半的值不改变位置
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值