HashMap特点
- 线程不安全
- 运行效率快
- key或value都可以使用null
- 存储结构:哈希表(JDK1.8后是数组+链表+红黑树)
HashMap常用方法
import java.util.HashMap;
import java.util.Map;
/**
* @author 张宝旭
*/
public class HashMapTest {
public static void main(String[] args) {
HashMap<Integer, String> map = new HashMap<>();
// 添加元素
map.put(1, "北京");
map.put(2, "上海");
map.put(3, "沈阳");
map.put(4, "东戴河");
// keySet遍历
for (Integer key : map.keySet()) {
System.out.println(key + " : " + map.get(key));
}
// entry遍历
for (Map.Entry<Integer, String> entry : map.entrySet()) {
System.out.println(entry.getKey() + " : " + entry.getValue());
}
// 删除元素
map.remove(4);
// 获取map大小
System.out.println("map大小: " + map.size());
// 清空元素
map.clear();
}
}
HashMap源码分析
常量
初始容量(刚创建时没有大小,当添加第一个元素时,进行扩容到初始容量16)
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
最大容量
static final int MAXIMUM_CAPACITY = 1 << 30;
加载因子:容量为16,阈值=加载因子×容量=0.75*16=12,当数组中元素增加到12的时候,会进行扩容
static final float DEFAULT_LOAD_FACTOR = 0.75f;
当数组的长度大于64时,且链表的长度大于8时,就会转换成红黑树
static final int MIN_TREEIFY_CAPACITY = 64;
static final int TREEIFY_THRESHOLD = 8;
当长度小于6的时候,就会由红黑树转换回数组+链表
static final int UNTREEIFY_THRESHOLD = 6;
map中的元素存储在Node类型的数组中
transient Node<K,V>[] table;
构造方法
public HashMap() {
// 初始化加载因子 = 0.75
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
put()方法
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
先查看putVal()方法中的第一个参数hash()方法
当key == null时,就返回0,否则令哈希值和哈希值向右移16位的值做异或(高16位与低16位异或)
用这个值来计算位置,目的:为了尽量减少散列冲突,避免链表太长
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
异或操作分析
01101001 01101001 01101001 01101001 // 哈希值
00000000 00000000 01101001 01101001 // 无符号右移16位
------------------------------------- // 异或
01101001 01101001 ... // (高16位不变) 用这个值来计算位数,目的:为了尽量减少散列冲突,避免链表太长
分析putVal方法(核心方法)
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// 将table赋值给tab,然后判断是否为null,为null说明map中没有元素
// 元素存在table中,类型为Node类型,初始为空
if ((tab = table) == null || (n = tab.length) == 0)
// 进行扩容 resize()返回一个新的数组给tab
n = (tab = resize()).length;
// 主要计算位置:根据哈希值异或之后的结果与n-1进行与运算,计算位置,(下面有分析)
if ((p = tab[i = (n - 1) & hash]) == null)
// 计算完位置之后,如果对应位置为空,就新建一个节点,然后赋值
tab[i] = newNode(hash, key, value, null);
else {
// 如果对应位置不为空,就是发生哈希冲突,然后下面解决冲突
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
// 转换成红黑树
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
// 当增加一个元素之后的大小大于阈值的时候,就会再进行扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
resize()扩容方法
当数组为空的时候,第一次进行扩容
- …
- 设置容量 = 16,阈值 = 0.75*16 = 12
- 创建一个长度为16的数组,并返回这个数组
- …
当数组不为空的时候,再需要扩容时
- 将原数组赋值到oldTab中
- 容量×2,阈值×2
- 创建一个新的数组,长度为16
- …
final Node<K,V>[] resize() {
// 创建一个Node类型的数组,将原数组table值赋值给oldTab
Node<K,V>[] oldTab = table;
// 如果oldTab为null,oldCap取值0,否则就取值原数组的长度
int oldCap = (oldTab == null) ? 0 : oldTab.length;
// 阈值,初始时为0
int oldThr = threshold;
int newCap, newThr = 0;
// 当不是初始扩容时(第二次或以后需要扩容时)
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 容量乘2
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
// 阈值乘2
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
// 初始容量16
newCap = DEFAULT_INITIAL_CAPACITY;
// 阈值 0.75*16 = 12
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
// 创建一个新的数组,长度为16
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
// 当数组中有元素时,再进行扩容...
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
分析
根据哈希值异或之后的结果与n-1进行与运算,计算位置
if ((p = tab[i = (n - 1) & hash]) == null)
(此分析为第一次添加元素时的扩容计算位置,n=16)
01101001 01101001 01101001 01101001
1111
------------------------------------- // 与运算
00000000 00000000 00000000 00001001 // 结果为0-15,在数组长度的范围内
为什么每次扩容2倍?
01101001 01101001 01101001 01101001
1111
// 当从16扩容到32时,也就从n-1=31,为
11111
// 多出来的那个最前面的1,和上面对应位的值相与,如果上面的对应位是0,则结果为0 1001,如果上面对应位是1,则结果为1 1001
// 后面四位不变,而前面的一位有一半的概率为1,一半的概率为0,所以重新计算的值,有一半的概率不变,就是有一半的值不改变位置