
图像理解
文章平均质量分 83
疯狂的Alex
程序猿一枚,目前专注于C#,欢迎交流
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
图像处理必知:香农熵如何衡量图像信息量?通俗解析 + 计算示例
图像香农熵是衡量图像信息量的重要指标,通过灰度分布概率计算得出。纯色图像熵值低(信息量少),噪声图像熵值高(信息杂乱),自然图像介于两者之间。计算步骤包括统计各灰度级像素数、计算出现概率,最后代入熵公式求和。该指标在图像压缩、分割等处理中具有重要应用价值。示例中8×7图像经计算得到熵值约2.751bit/像素,反映了该图像的信息丰富程度。原创 2025-07-16 14:56:31 · 766 阅读 · 0 评论 -
看懂形状的 “密码”:链码背后的图像理解智慧
摘要: 链码是一种用数字编码描述物体轮廓的技术,帮助机器识别形状。它通过记录相邻像素的方向变化(如四方向或八方向编码)压缩信息,忽略无关细节,提取形状本质特征。起点归一化技术确保不同起始点的同一形状能被机器识别。链码广泛应用于工业质检、手写识别、指纹验证等领域,是机器"看懂"世界的关键技术。未来,链码可能与深度学习结合,拓展至自动驾驶、医疗影像等场景,用简单规则解决复杂问题。原创 2025-07-17 14:37:49 · 575 阅读 · 0 评论 -
图像处理、图像分析和图像理解的定义、联系与区别
图像处理、图像分析与图像理解是计算机视觉的三个层次。图像处理是低层操作,聚焦像素级优化(如去噪、增强);图像分析是中层操作,提取特征和对象信息(如分割、识别);图像理解是高层语义解释(如场景推理)。三者呈递进关系:处理为分析提供数据,分析为理解提供基础。区别在于操作层级(像素→特征→语义)和数据抽象程度(原始数据→结构化信息→符号化表达)。典型应用包括医学影像诊断(增强→分割→诊断)和自动驾驶(去噪→检测→行为预测)。三者协同实现从像素到语义的完整解析流程。原创 2025-06-04 09:28:25 · 484 阅读 · 0 评论