Tensorflow多分类指标 如何用tf.metrics计算precision、recall、f1值

本文介绍如何在Tensorflow中使用tf.metrics计算多分类任务的precision、recall和F1值,参考自guillaumegenthial的tf_metrics库。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

来自https://github.com/guillaumegenthial/tf_metrics。

"""Multiclass"""

__author__ = "Guillaume Genthial"

import numpy as np
import tensorflow as tf
from tensorflow.python.ops.metrics_impl import _streaming_confusion_matrix


def precision(labels, predictions, num_classes, pos_indices=None,
              weights=None, average='micro'):
    """Multi-class precision metric for Tensorflow
    Parameters
    ----------
    labels : Tensor of tf.int32 or tf.int64
        The true labels
    predictions : Tensor 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值