理解机器学习中的术语

标量 向量 矩阵 张量

  • 标量(scalar),也可以叫做常量,例如 x = 5
  • 向量(vector), 它是一个一维数组,例如 x = [1,3,4]
  • 矩阵(matrix), 它是一个二维数组,例如
1 2 3
4 5 6
7 8 9
  • 张量(tensor)是一个多维数组,张量涵盖向量,矩阵,3D空间(例如正方体), 4维等等
    • 标量是张量的最小组成,类似于一个点
    • 向量是一个 1阶张量, 是一条线
    • 矩阵是一个 2阶张量, 是一个平面
    • 依次类推
  • 故而张量是机器学习的基础数据存储单位

求导,梯度

  • 高等数学中一个函数 y = f ( x ) y = f(x) y=f(x)
  • 假设这个函数表示求出速度 , y ( 速度 k m / h ) = 1000 ( m ) x ( 小时 h ) y(速度km/h) = \frac{1000(m)}{x(小时 h)} y(速度km/h)=x(小时h)1000(m)
  • 那么这里的求导就是一个求出加速度 p p p
  • p = f ′ ( x ) = ( 1000 x ) ′ = − 1000 x 2 p = f^{'}(x) = (\frac{1000}{x})^{'} = -\frac{1000}{x^2} p=f(x)=(x1000)=x21000
  • 这里的求导直接使用了 牛顿莱布尼茨公式
  • 而代码的办法是逼近求导

代码实现(导数计算)

  • y = f ( x ) y = f(x) y=f(x)
  • 根据最基础的求导理解,逼近 p = lim ⁡ n − > 0 f ( x + n ) − f ( x ) n p = \lim_{n->0}\frac{f(x+n)-f(x)}{n} p=limn>0nf(x+n)f(x)
  • 那么求导代码如下
def func(x):
	return 1000 / x
# 求导数
def get_p(x, batch=5, init=0.1, step=0.1):
    for i in range(batch):
    	result = (func(x + init) - func(x)) / init
    	init = init * step
    	print(f"result == {result} batch = {i} init = {init}")
    return result
# 根据极限逼近公式计算
print(get_p(1)) # -999.99
# 根据莱布尼茨公式计算
print(-1000 / (1**2)) # -1000
pytorch实现(导数计算)
  • 需要创建一个能够记录梯度的张量
  • requires_grad 表示需要记录梯度(导数)
  • 梯度(gradience), 可以被解释为多维空间中的导数(2D平面空间)
import torch
x = torch.tensor([1], dtype=torch.float, requires_grad=True)
y = 1000 / x
y.backward()
print(x.grad) # -1000

二维空间、三维空间,n维,梯度,导数(特殊的梯度)

  • 导数是二维空间的 梯度,形式为 (x,)
  • 如果是三维空间,函数表示为 z = a x n + b y m + c z = ax^n + by^m + c z=axn+bym+c 的形式
    • 例如球可以表示为 z = x 2 + y 2 z = x^2 + y^2 z=x2+y2
      在这里插入图片描述
    • 在二维空间中,导数对应的是一个切线,而三维中,梯度对应的是一个切面,切线和切面的倾斜度表示了导数和梯度的大小
    • 在数学中 两点可以求出一条线,或者 一个点的坐标 加上线的斜率也可以求出这个线,
    • 在三维中也类似,梯度近似于求出这个切面,而面需要三个点,或者,一个点的坐标和在另外两位维度的倾斜度,所以梯度表示为(x, y),数学表达是偏导数,就是z 在x 这个方向的变化程序,表示为 d z d x = l i m i − > 0 f ( x + i , y ) − f ( x , y ) i \frac{dz}{dx} = lim_{i->0}\frac{f(x + i, y) - f(x, y)}{i} dxdz=limi>0if(x+i,y)f(x,y)
    • 然后依次类推数学规律,n维张量的梯度表示为 ( p 1 , p 2 , . . . p n − 1 ) (p_1, p_2, ... p_{n-1}) (p1,p2,...pn1), 也就是共有 n − 1 n-1 n1个数值
    • 请注意,需要一个实际的点位值(坐标),才可以求出实际的梯度(导数)值
代码实现(梯度计算)
def func(x, y):
	# 球方程
	return y**2 + x **2
# 求导数
def get_p(x, y, batch=5, init=0.1, step=0.1):
    for i in range(batch):
    	result_x = (func(x + init, y) - func(x, y)) / init
    	init = init * step
    	print(f"result == {result_x} batch = {i} init = {init}")
    for i in range(batch):
    	result_y = (func(x, y + init) - func(x, y)) / init
    	init = init * step
    	print(f"result == {result_y} batch = {i} init = {init}")
    return (result_x, result_y)
# 根据极限逼近公式计算
print(get_p(1, 1)) # (2.000001, 2.000001)
# 根据莱布尼茨公式计算
    # z = (2x, 2y)
print((2 * 1, 2 * 1)) # (2, 2)
pytorch 实现(梯度计算)
import torch
x = torch.tensor([1, ], dtype=torch.float, requires_grad=True)
y = torch.tensor([1, ], dtype=torch.float, requires_grad=True)
z = x ** 2 + y ** 2
z.backward()
print(x.grad, y.grad) # (2, 2)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值