pytorch:concat和stack的区别

整体来讲,concat是对dim进行拼接,stack是对dim维进行堆叠。
concat:不会增加新的维度,在指定维度上拼接。
stack:增加一个新的维度将两个单位,然后再上一维度分别进行堆叠。

下面的代码仅为直观维度上的变化,第二部分有图像辅助理解。

代码测试

测试1:以两个[3,4]矩阵a,b作为输入进行concat、stack测试
输入:

#data a and b
a = torch.tensor([[1,2,3,4],
                 [5,6,7,8]],dtype=torch.int16)
b = torch.tensor([[9,10,11,12],
                 [13,14,15,16]],dtype=torch.int16)
print("a:\n{}".format(a))
print("b:\n{}".format(b))
#dim=0
ab_concat_0 = torch.cat([a, b], dim=0)
ab_stack_0 = torch.stack([a, b], dim=0)
print("ab_concat_0:\n{}\nshape:{}".format(ab_concat_0,ab_concat_0.shape))
print("ab_stack_0:\n{}\nshape:{}".format(ab_stack_0,ab_stack_0.shape))
#dim=1
ab_concat_1 = torch.cat([a, b], dim=1)
ab_stack_1 = torch.stack([a, b], dim=1)
print("ab_concat_1:\n{}\nshape:{}".format(ab_concat_1,ab_concat_1.shape))
print("ab_stack_1:\n{}\nshape:{}".format(ab_stack_1,ab_stack_1.shape))
#dim=2
# ab_concat_2 = torch.cat([a, b], dim=2) error
ab_stack_2 = torch.stack([a, b], dim=2)
# print("ab_concat_2:\n{}".format(ab_concat_2))
print("ab_stack_2:\n{}\nshape:{}".format(ab_stack_2,ab_stack_2.shape))

 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

输出:

#data
a:
tensor([[ 1,  2,  3,  4],
        [ 5,  6,  7,  8],
        [ 9, 10, 11, 12]], dtype=torch.int16)
b:
tensor([[13, 14, 15, 16],
        [17, 18, 19, 20],
        [21, 22, 23, 24]], dtype=torch.int16)
#dim=0
ab_concat_0:
tensor([[ 1,  2,  3,  4],
        [ 5,  6,  7,  8],
        [ 9, 10, 11, 12],
        [13, 14, 15, 16],
        [17, 18, 19, 20],
        [21, 22, 23, 24]], dtype=torch.int16)
shape:torch.Size([6, 4])
ab_stack_0:
tensor([[[ 1,  2,  3,  4],
         [ 5,  6,  7,  8],
         [ 9, 10, 11, 12]],
    <span class="token punctuation">[</span><span class="token punctuation">[</span><span class="token number">13</span>, <span class="token number">14</span>, <span class="token number">15</span>, <span class="token number">16</span><span class="token punctuation">]</span>,
     <span class="token punctuation">[</span><span class="token number">17</span>, <span class="token number">18</span>, <span class="token number">19</span>, <span class="token number">20</span><span class="token punctuation">]</span>,
     <span class="token punctuation">[</span><span class="token number">21</span>, <span class="token number">22</span>, <span class="token number">23</span>, <span class="token number">24</span><span class="token punctuation">]</span><span class="token punctuation">]</span><span class="token punctuation">]</span>, <span class="token assign-left variable">dtype</span><span class="token operator">=</span>torch.int16<span class="token punctuation">)</span>

shape:torch.Size([2, 3, 4])
#dim=1
ab_concat_1:
tensor([[ 1, 2, 3, 4, 13, 14, 15, 16],
[ 5, 6, 7, 8, 17, 18, 19, 20],
[ 9, 10, 11, 12, 21, 22, 23, 24]], dtype=torch.int16)
shape:torch.Size([3, 8])
ab_stack_1:
tensor([[[ 1, 2, 3, 4],
[13, 14, 15, 16]],

    <span class="token punctuation">[</span><span class="token punctuation">[</span> <span class="token number">5</span>,  <span class="token number">6</span>,  <span class="token number">7</span>,  <span class="token number">8</span><span class="token punctuation">]</span>,
     <span class="token punctuation">[</span><span class="token number">17</span>, <span class="token number">18</span>, <span class="token number">19</span>, <span class="token number">20</span><span class="token punctuation">]</span><span class="token punctuation">]</span>,

    <span class="token punctuation">[</span><span class="token punctuation">[</span> <span class="token number">9</span>, <span class="token number">10</span>, <span class="token number">11</span>, <span class="token number">12</span><span class="token punctuation">]</span>,
     <span class="token punctuation">[</span><span class="token number">21</span>, <span class="token number">22</span>, <span class="token number">23</span>, <span class="token number">24</span><span class="token punctuation">]</span><span class="token punctuation">]</span><span class="token punctuation">]</span>, <span class="token assign-left variable">dtype</span><span class="token operator">=</span>torch.int16<span class="token punctuation">)</span>

shape:torch.Size([3, 2, 4])
#dim=2
ab_stack_2:
tensor([[[ 1, 13],
[ 2, 14],
[ 3, 15],
[ 4, 16]],

    <span class="token punctuation">[</span><span class="token punctuation">[</span> <span class="token number">5</span>, <span class="token number">17</span><span class="token punctuation">]</span>,
     <span class="token punctuation">[</span> <span class="token number">6</span>, <span class="token number">18</span><span class="token punctuation">]</span>,
     <span class="token punctuation">[</span> <span class="token number">7</span>, <span class="token number">19</span><span class="token punctuation">]</span>,
     <span class="token punctuation">[</span> <span class="token number">8</span>, <span class="token number">20</span><span class="token punctuation">]</span><span class="token punctuation">]</span>,

    <span class="token punctuation">[</span><span class="token punctuation">[</span> <span class="token number">9</span>, <span class="token number">21</span><span class="token punctuation">]</span>,
     <span class="token punctuation">[</span><span class="token number">10</span>, <span class="token number">22</span><span class="token punctuation">]</span>,
     <span class="token punctuation">[</span><span class="token number">11</span>, <span class="token number">23</span><span class="token punctuation">]</span>,
     <span class="token punctuation">[</span><span class="token number">12</span>, <span class="token number">24</span><span class="token punctuation">]</span><span class="token punctuation">]</span><span class="token punctuation">]</span>, <span class="token assign-left variable">dtype</span><span class="token operator">=</span>torch.int16<span class="token punctuation">)</span>

shape:torch.Size([3, 4, 2])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60

测试2:升一个维度,用两个维度为[3,4,5]的矩阵进行测试

#data
a:
shape:torch.Size([3, 4, 5])
b:
shape:torch.Size([3, 4, 5])

#dim=0
ab_concat_0:
shape:torch.Size([6, 4, 5])

ab_stack_0:
shape:torch.Size([2, 3, 4, 5])
#dim=1
ab_concat_1:
shape:torch.Size([3, 8, 5])

ab_stack_1:
shape:torch.Size([3, 2, 4, 5])
#dim=2
ab_concat_2:
shape:torch.Size([3, 4, 10])

ab_stack_2:
shape:torch.Size([3, 4, 2, 5])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

在图像上

concat

可以理解为沿着dim维延申拼接。
dim=0:
在dim=0,该维度上的单位为红色框的A=(4,3)矩阵,此时concat表示在dim=0上,以A为单位进行延申拼接。
在这里插入图片描述
dim=1:
在dim=1,该维度上的单位为类似红色框的B=(1,3)矩阵,此时concat表示在dim=1上,以B为单位进行延申拼接。
在这里插入图片描述

dim=2:
在dim=1,该维度上的单位为类似红色框的C=(3,1)矩阵,此时concat表示在dim=2上,以C为单位进行延申拼接。
在这里插入图片描述

stack

两个矩阵分别将dim维度下的所有数据为单位,在新的维度上进行堆叠。
dim=0:
在dim=1,此维度下以A=(3,4,3)为单位,如红色框所示,以新的维度分别在上一维((3,4,3)的上一维度为0,也就是直接将单位在新维度堆叠形成新维度)进行堆叠,得到(3,2,4,3)。
在这里插入图片描述
dim=1:
在dim=1,此维度下以B=(4,3)为单位,如红色框所示,以新的维度分别在上一维((4,3)的上一维度为3)进行堆叠,得到(3,2,4,3)。
在这里插入图片描述
dim=2:
在dim=2,此维度下以C=(3)为单位,如红色框所示,以新的维度分别在上一维((3)的上一维度为4)进行堆叠,得到C’=(4,2,3),然后,以C’为单位,分别在上一维((4,2,3)的上一维度为3)进行堆叠得到(3,4,2,3)。
在这里插入图片描述

dim=3:
在dim=3,此维度下以D=[3] 的下一维度为单位,即最小元素,如红色框所示,以新的维度分别在上一维(上一维度为3)进行堆叠,得到D’=(3,2),然后,以D’为单位,分别在上一维((3,2)的上一位度为4)进行堆叠得到(4,2,3),然后同理得到(3,4,3,2)。
在这里插入图片描述
上述仅为个人理解,如有问题欢迎交流指正。

注:本篇博客由团队博士生发表,联系方式:2021024014@chd.edu.cn
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值