图像特征检测方法—SIFT的Python实现

VLFeat 以及 SIFT 相关资源
 

实现平台:Win64 + Pycharm/anaconda

VLFeat工具包: 官方下载链接下载www.vlfeat.org。建议下载VLFeat0.9.20 

****使用win64下的sift,可能会出现查找不到test.sift。 
1)使用win32代替VLFeat/win64”
解决方案: cmmd = str("D:\PCV\VLFeat\win32\sift.exe "+imagename+" --output="+resultname+ " "+params)
2) 点击“win32”文件夹里的“sift.exe”时,系统提示“无法启动此程序,vcomp100.dll丢失”。 下载“vcomp100.dll”,放到了“目录C:\Windows\SysWOW64”下(64位系统),解决问题。 然后再点击“win32”文件夹里的“sift.exe”时,系统不会提示错误,而是命令行的窗口一闪而过,此时就可以运行了

sift描述子

在过去的十年间,最成功的图像局部描述子之一是尺度不变特征变换(SIFT),它是由David Lowe发明的。SIFT在2004年由Lowe完善并经受住了时间的考验。关于SIFT原理的详细介绍,可以参阅中译本,在WIKI上你可以看一个简要的概览。

2.2.1 兴趣点

2.2.2 描述子

2.2.3 检测感兴趣点

为了计算图像的SIFT特征,我们用开源工具包VLFeat。用Python重新实现SIFT特征提取的全过程不会很高效,而且也超出了本书的范围。VLFeat可以在www.vlfeat.org上下载,它的二进制文件可以用于一些主要的平台。这个库是用C写的,不过我们可以利用它的命令行接口。此外,它还有Matlab接口。下面代码是再现原书P40页的代码:

# -*- coding: utf-8 -*-
from PIL import Image
from pylab import *
from PCV.localdescriptors import sift
from PCV.localdescriptors import harris

# 添加中文字体支持
from matplotlib.font_manager import FontProperties
font = FontProperties(fname=r"c:\windows\fonts\SimSun.ttc", size=14)

imname = '01.jpg'
im = array(Image.open(imname).convert('L'))
sift.process_image(imname, '01.sift')
l1, d1 = sift.read_features_from_file('01.sift')

figure()
gray()
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值