随着人工智能技术的不断发展,开源大模型因其高度的灵活性和可定制性,受到了越来越多开发者和研究人员的青睐。虽然GPU(比如:Nvida的A100, A800,L20等)是大模型运行必备,并且备受青睐。但是考虑到成本限制,尤其是刚接触入门的小白,可能需要基于手头电脑cpu资源环境,跃跃欲试,做下先行探索。
本文基于自己的实践经验,指导您如何在Linux纯CPU环境下部署和运行开源大模型。
实验环境:
一台单机linux系统电脑,纯CPU运行环境:8核心、32G内存、无显存
实操过程
在本地部署运行时,重点尝试下面三种方式:
1、使用Ollame部署和运行大模型
Ollama 是一个强大的框架,设计用于在 Docker 容器中部署 LLM。它帮助用户快速在本地运行大模型,通过简单的安装指令,可以让用户执行一条命令就在本地运行开源大型语言模型。只需要简单两步:
(1)安装环境(docker安装,较简单)
1)Docker Pull Command
docker pull ollama/ollama
该命令是从ollma镜像库中拉取和安装ollama环境。
目前镜像是默认连接github下载,如果尝试多次都是连接timeout,建议手动从ollama官网下载安装:
如果下载仍然失败(或者访问github太慢),建议多试两次。
或者通过访问gitcode,尝试手动下载安装(点击上图中的蓝色框链接)
linux手动安装指南:GitCode - 全球开发者的开源社区,开源代码托管平台
2)Start the container<