signature=ff5308f568a813d2b08e222c489e39a5,On The Hankel-Norm Approximation Of Upper-Triangular Oper...

该文研究了由有限矩阵构成的上三角算子矩阵AmatrixT,并探讨了其在非平稳但线性动态状态空间模型下的模型约简问题。针对这类模型,提出了使用推广的Hankel范数进行最优逼近的方法,并通过非平稳J-酉算子构造了一种分数表示,以参数化模型约简问题的所有解。这一理论扩展了Adamyan, Arov和Kreinin在平稳线性动力系统中关于Schur-Takagi插值问题的工作,涵盖了更广泛的非Toeplitz上三角算子。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要:

A matrix T = [T(ij)]i,j=-infinity(infinity), which consists of a doubly indexed collection {T(ij)} of operators, is said to be upper when T(ij) = 0 for i > j. We consider the case where the T(ij) are finite matrices and the operator T is bounded, and such that the T(ij) are generated by a strictly stable, non-stationary but linear dynamical state space model or colligation. For such a model, we consider model reduction, which is a procedure to obtain optimal approximating models of lower system order. Our approximation theory uses a norm which generalizes the Hankel norm of classical stationary linear dynamical systems. We obtain a parametrization of all solutions of the model order reduction problem in terms of a fractional representation based on a non-stationary J-unitary operator constructed from the data. In addition, we derive a state space model for the so-called maximum entropy approximant. In the stationary case, the problem was solved by Adamyan, Arov and Krein in their paper on Schur-Takagi interpolation. Our approach extends that theory to cover general, non-Toeplitz, upper operators.

展开

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值